Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13567
DC FieldValueLanguage
dc.contributor.authorMiltiadou, Milto-
dc.contributor.authorGrant, Michael-
dc.contributor.authorBrown, Matthew A.-
dc.contributor.authorWarren, Mark-
dc.contributor.authorCarolan, Emma-
dc.date.accessioned2019-04-24T06:15:41Z-
dc.date.available2019-04-24T06:15:41Z-
dc.date.issued2014-
dc.identifier.citationRemote Sensing and Phtogrammetry Society Annual Conference (RSPSOC), 2014, New Sensors for a Changing World, Aberystwyth, United Kingdomen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/13567-
dc.description.abstractThis study focuses on enhancing the visualisation of FW LiDAR data. The intensity profile of each full-waveform pulse is accumulated into a voxel array, building up a fully-3D representation of the returned intensities. The 3D representation is then polygonised using functional representation (FRep) of geometric objects. In addition to using the higher resolution FW data, the voxels can accumulate evidence from multiple pulses, which confers greater noise resistance. Moreover, this approach opens up possibilities of vertical observation of data, while the pulses are emitted in different angles. Multi-resolution rendering and visualisation of entire flightlines are also allowed. Introduction: The most common approach of interpreting the data, so far, was decomposition of the signal into a sum of Gaussian functions and sequentially extraction of points clouds from the waves (Wanger, Ullrich, Ducic, Malzer , & Studnicka, 2006). Neunschwander et al used this approach for Landover classification (Neuenschwander, Magruder, & Tyler, 2009) while Reightberger et al applied it for distinguishing deciduous trees from coniferous trees (Reitberger, Krzystek, & Stilla, 2006). In 2007, Chauve et al proposed an approach of improving the Gaussian model in order to increase the density of the points cloud extracted from the data and consequently improve point based classifications applied on full-waveform LiDAR data (Chauve, Mallet, Bretar, Durrieu, Deseilligny, & Puech, 2007).en_US
dc.language.isoenen_US
dc.titleReconstruction of a 3D Polygon Representation from full-waveform LiDAR dataen_US
dc.typeArticleen_US
dc.collaborationUniversity of Bathen_US
dc.collaborationPlymouth Marine Laboratoryen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
cut.common.academicyear2014-2015en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4715-5048-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
Files in This Item:
File Description SizeFormat
015.Reconstructionofa3DPolygonextendedabstract.pdf892.73 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s) 50

330
Last Week
2
Last month
2
checked on Jan 3, 2025

Download(s) 50

98
checked on Jan 3, 2025

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.