Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13566
DC FieldValueLanguage
dc.contributor.authorMiltiadou, Milto-
dc.contributor.authorWarren, Mark-
dc.contributor.authorGrant, Michael G.-
dc.contributor.authorBrown, Matthew A.-
dc.date.accessioned2019-04-24T06:13:22Z-
dc.date.available2019-04-24T06:13:22Z-
dc.date.issued2015-04-28-
dc.identifier.citationInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2015, vol. 40, no. 7W3, pp. 1257-1264en_US
dc.identifier.issn16821750-
dc.descriptionPresented at 36th International Symposium on Remote Sensing of Environment, Berlin, Germany, 11-15 May, 2015en_US
dc.description.abstractThe overarching aim of this paper is to enhance the visualisations and classifications of airborne remote sensing data for remote forest surveys. A new open source tool is presented for aligning hyperspectral and full-waveform LiDAR data. The tool produces coloured polygon representations of the scanned areas and aligned metrics from both datasets. Using data provided by NERC ARSF, tree coverage maps are generated and projected into the polygons. The 3D polygon meshes show well-separated structures and are suitable for direct rendering with commodity 3D-accelerated hardware allowing smooth visualisation. The intensity profile of each wave sample is accumulated into a 3D discrete density volume building a 3D representation of the scanned area. The 3D volume is then polygonised using the Marching Cubes algorithm. Further, three user-defined bands from the hyperspectral images are projected into the polygon mesh as RGB colours. Regarding the classifications of full-waveform LiDAR data, previous work used extraction of point clouds while this paper introduces a new approach of deriving information from the 3D volume representation and the hyperspectral data. We generate aligned metrics of multiple resolutions, including the standard deviation of the hyperspectral bands and width of the reflected waveform derived from the volume. Tree coverage maps are then generated using a Bayesian probabilistic model and due to the combination of the data, higher accuracy classification results are expected.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archivesen_US
dc.subjectFull-waveform LiDARen_US
dc.subjectHyperspectral imageryen_US
dc.subjectIntegrationen_US
dc.subjectTree coverage mapsen_US
dc.subjectVisualisationen_US
dc.subjectVoxelisationen_US
dc.titleAlignment of hyperspectral imagery and full-waveform LIDAR data for visualisation and classification purposesen_US
dc.typeArticleen_US
dc.collaborationUniversity of Bathen_US
dc.collaborationPlymouth Marine Laboratoryen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.5194/isprsarchives-XL-7-W3-1257-2015en_US
dc.identifier.scopus2-s2.0-84930403122-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84930403122-
dc.relation.issue7W3en_US
dc.relation.volume40en_US
cut.common.academicyear2014-2015en_US
dc.identifier.spage1257en_US
dc.identifier.epage1264en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4715-5048-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1682-1750-
crisitem.journal.publisherInternational Society for Photogrammetry and Remote Sensing-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
isprsarchives-XL-7-W3-1257-2015.pdf1.4 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

8
checked on Mar 14, 2024

Page view(s)

396
Last Week
0
Last month
6
checked on Jan 30, 2025

Download(s)

179
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.