Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/1350
Title: | Ambipolar charge transport in films of methanofullerene and poly(phenylenevinylene)/methanofullerene blends | Authors: | Choulis, Stelios A. Tuladhar, Sachetan M. Poplavskyy, Dmitry |
metadata.dc.contributor.other: | Χούλης, Στέλιος Α. | Major Field of Science: | Engineering and Technology | Field Category: | ENGINEERING AND TECHNOLOGY | Keywords: | Charge transfer;Electric currents;Esters;Fullerenes;Thin films;Methane | Issue Date: | 4-Jul-2005 | Source: | Advanced functional materials, 2005, vol. 15, no. 7, pp. 1171-1182 | Volume: | 15 | Issue: | 7 | Start page: | 1171 | End page: | 1182 | Journal: | Advanced Functional Materials | Abstract: | Herein, we report experimental studies of electron and hole transport in thin films of [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and in blends of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) with PCBM. The low-field hole mobility in pristine MDMO-PPV is of the order of 10–7 cm2 V–1 s–1, in agreement with previous studies, whereas the electron mobility in pristine PCBM was found by current-density–voltage (J–V) measurements to be of the order of 10–2 cm2 V–1 s–1, which is about one order of magnitude greater than previously reported. Adding PCBM to the blend increases both electron and hole mobilities, compared to the pristine polymer, and results in less dispersive hole transport. The hole mobility in a blend containing 67 wt.-% PCBM is at least two orders of magnitude greater than in the pristine polymer. This result is independent of measurement technique and film thickness, indicating a true bulk property of the material. We therefore propose that PCBM may assist hole transport in the blend, either by participating in hole transport or by changing the polymer-chain packing to enhance hole mobility. Time-of-flight mobility measurements of PCBM dispersed in a polystyrene matrix yield electron and hole mobilities of similar magnitude and relatively non-dispersive transport. To the best of our knowledge, this is the first report of hole transport in a methanofullerene. We discuss the conditions under which hole transport in the fullerene phase of a polymer/fullerene blend may be expected. The relevance to photovoltaic device function is also discussed | URI: | https://hdl.handle.net/20.500.14279/1350 | ISSN: | 1616301X | DOI: | 10.1002/adfm.200400337 | Rights: | © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Attribution-NonCommercial-NoDerivs 3.0 United States |
Type: | Article | Affiliation: | Imperial College London | Affiliation : | Imperial College London | Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
238
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
50
229
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 5
590
Last Week
0
0
Last month
1
1
checked on Dec 21, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License