Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1330
DC FieldValueLanguage
dc.contributor.authorDias, Frederic-
dc.contributor.authorChristodoulides, Paul-
dc.contributor.otherΧριστοδουλίδης, Παύλος-
dc.date.accessioned2009-12-22T07:34:49Zen
dc.date.accessioned2013-05-17T05:23:05Z-
dc.date.accessioned2015-12-02T10:19:29Z-
dc.date.available2009-12-22T07:34:49Zen
dc.date.available2013-05-17T05:23:05Z-
dc.date.available2015-12-02T10:19:29Z-
dc.date.issued1994-04-25-
dc.identifier.citationJournal of Fluid Mechanics, 1994, vol. 265, pp. 303-343en_US
dc.identifier.issn14697645-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1330-
dc.description.abstractTwo-dimensional space-periodic cabillary–gravity waves at the interface between two fluids of different densities are considered when the second harmonic and the fundamental mode are near resonance. A weakly nonlinear analysis provides the equations (normal form), correct to third order, that relate the wave frequency with the amplitudes of the fundamental mode and of the second harmonic for all waves with small energy. A study of the normal form for waves which are also periodic in time reveals three possible types of space- and time-periodic waves: the well-known travelling and standing waves as well as an unusual class of three-mode mixed waves. Mixed waves are found to provide a connection between standing and travelling waves. The branching behaviour of all types of waves is shown to depend strongly on the density ratio. For travelling waves the weakly nonlinear results are confirmed numerically and extended to finite-amplitude waves. When slow modulations in time of the amplitudes are considered, a powerful geometrical method is used to study the resulting normal form. Finally a discussion on modulational stability suggests that increasing the density ratio has a stabilizing effect.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Fluid Mechanicsen_US
dc.rights© Cambridge University Pressen_US
dc.subjectWavesen_US
dc.titleResonant capillary–gravity interfacial wavesen_US
dc.typeArticleen_US
dc.affiliationInstitut Non-Lineaire de Niceen
dc.collaborationInstitut Non-Lineaire de Niceen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryFranceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1017/S0022112094000856en_US
dc.dept.handle123456789/54en
dc.relation.volume265en_US
cut.common.academicyear1995-1996en_US
dc.identifier.spage303en_US
dc.identifier.epage343en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn1469-7645-
crisitem.journal.publisherCambridge University Press-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-2229-8798-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

34
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

34
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 20

420
Last Week
1
Last month
12
checked on May 13, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.