Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/12782
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mamouri, Rodanthi-Elisavet | - |
dc.contributor.author | Ansmann, Albert | - |
dc.contributor.author | Nisantzi, Argyro | - |
dc.contributor.author | Buehl, Johannes | - |
dc.contributor.author | Hadjimitsis, Diofantos G. | - |
dc.date.accessioned | 2018-08-30T12:04:38Z | - |
dc.date.available | 2018-08-30T12:04:38Z | - |
dc.date.issued | 2018-04 | - |
dc.identifier.citation | European Geosciences Union General Assembly, 2018, Vienna, Austria, 8–13 April | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/12782 | - |
dc.description | Geophysical Research Abstracts, Volume 20, EGU2018-14243 | en_US |
dc.description.abstract | Field studies of aerosol–cloud-dynamics interaction are presently in the focus of atmospheric research. Large uncertainties in weather and future-climate predictions arise from gaps in our knowledge of the detailed impact of aerosols on the evolution of liquid-water, mixed-phase and cirrus clouds. This unsatisfactory situation motivates the strong efforts presently undertaken to investigate formation and evolution of cloud layers and associated aerosol–cloud interactions. In this respect, several field campaigns took place in Cyprus region in the framework of BACCHUS project since 2015. Aerosol particles influence cloud evolution, lifetime, and cloud microphysical properties in two ways. Ground-based active remote sensing (Raman depolarization and Doppler lidar and radar observations) can be used to continuously monitor the evolution of clouds in their natural (aerosol) environment, at given meteorological conditions with high vertical and temporal resolution. New methods were developed to retrieve height profiles of aerosol particle backscatter, extinction, and mass concentration as well as of the number concentration of cloud condensation nuclei and ice-nucleating particles (INPC). Furthermore, Doppler radar and lidar observations allow us to estimate the ice crystal number concentration (ICNC) in mixed-phase and ice clouds. Measurement examples and INPC vs ICNC closure studies will present. The case studies corroborate the usefulness of the new methods and their application to space-borne datasets. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation | EXCELSIOR | - |
dc.rights | © Author(s) 2018. | en_US |
dc.subject | Aerosol–cloud-dynamics interaction | en_US |
dc.subject | Weather | en_US |
dc.subject | Climate predictions | en_US |
dc.title | New remote-sensing-based methodologies for aerosol-cloud studies: application on space-borne and ground based observations | en_US |
dc.type | Conference Papers | en_US |
dc.link | https://meetingorganizer.copernicus.org/EGU2018/EGU2018-14243.pdf | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | Leibniz Institute for Tropospheric Research | en_US |
dc.subject.category | Earth and Related Environmental Sciences | en_US |
dc.country | Cyprus | en_US |
dc.country | Germany | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
cut.common.academicyear | 2017-2018 | en_US |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.languageiso639-1 | en | - |
crisitem.project.funder | EC | - |
crisitem.project.grantno | H2020-WIDESPREAD-04-2017 | - |
crisitem.project.fundingProgram | H2020 | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/EC/H2020/763643 | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-4836-8560 | - |
crisitem.author.orcid | 0000-0001-5382-8440 | - |
crisitem.author.orcid | 0000-0001-8159-248X | - |
crisitem.author.orcid | 0000-0002-2684-547X | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
09_3_EGU2018-14243_paper.pdf | 33.57 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s) 20
457
Last Week
0
0
Last month
9
9
checked on Jan 31, 2025
Download(s) 50
74
checked on Jan 31, 2025
Google ScholarTM
Check
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.