Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/12674
DC FieldValueLanguage
dc.contributor.authorChristodoulou, Panayiotis-
dc.contributor.authorChristoforou, Andreas-
dc.contributor.authorAndreou, Andreas S.-
dc.date.accessioned2018-08-21T09:57:34Z-
dc.date.available2018-08-21T09:57:34Z-
dc.date.issued2017-04-26-
dc.identifier.citation19th International Conference on Enterprise Information Systems, 2017, vol. 1, pp. 554-564, 26-29 Aprilen_US
dc.identifier.isbn978-989758247-9-
dc.description.abstractThis paper introduces a new hybrid prediction model combining Fuzzy Cognitive Maps (FCM) and Support Vector Machines (SVM) to increase accuracy. The proposed model first uses the FCM part to discover correlation patterns and interrelationships that exist between data variables and form a single latent variable. It then feeds this variable to the SVM part to improve prediction capabilities. The efficacy of the hybrid model is demonstrated through its application on two different problem domains. The experimental results show that the proposed model is better than the traditional SVM model and also outperforms other widely used supervised machine-learning techniques like Weighted k-NN, Linear Discrimination Analysis and Classification Trees.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2017 SCITEPRESSen_US
dc.subjectClassification Treeen_US
dc.subjectFuzzy Cognitive Mapsen_US
dc.subjectLinear Discriminationen_US
dc.subjectMachine learningen_US
dc.subjectPredictionen_US
dc.subjectSupport Vector Machineen_US
dc.subjectWeighted k-NNen_US
dc.titleA hybrid prediction model integrating Fuzzy Cognitive Maps with Support Vector Machinesen_US
dc.typeConference Papersen_US
dc.linkhttp://www.scitepress.org/Papers/2017/63294/63294.pdfen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Enterprise Information Systemsen_US
dc.identifier.doi10.5220/0006329405540564en_US
cut.common.academicyear2016-2017en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-5598-8894-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 6, 2023

Page view(s) 50

368
Last Week
1
Last month
1
checked on Jan 7, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.