Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/12635
DC FieldValueLanguage
dc.contributor.authorYiallourou, Emilios-
dc.contributor.authorDemetriou, Rafaella-
dc.contributor.authorLanitis, Andreas-
dc.date.accessioned2018-08-08T11:27:05Z-
dc.date.available2018-08-08T11:27:05Z-
dc.date.issued2017-08-03-
dc.identifier.citation24th International Conference on Telecommunications, 2017, Limassol, Cyprus, 3-5 Mayen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/12635-
dc.description.abstractThe vast increase in the use of social networks and other internet-based communication tools contributed to the escalation of the problem of exchanging child pornographic material over the internet. The problem of dissemination of child pornographic material could be addressed using dedicated image detection algorithms capable of rating the inappropriateness level of images exchanged through computer networks so that images with inappropriate content involving children are blocked. However, the complexity of the image detection task coupled with the nonexistence of suitable datasets, inhibit the development of efficient algorithms that can be used for detecting offensive images containing children. To deal with the problem, we propose a methodological approach that can be used for supporting the development of child pornography detectors through the generation of synthetic datasets and through the decomposition of the task into a set of simpler tasks for which training data is available. Preliminary results show the promise of the proposed approach.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2017 IEEE.en_US
dc.subjectAge estimationen_US
dc.subjectChild pornography detectionen_US
dc.subjectExpression recognitionen_US
dc.subjectFace detectionen_US
dc.subjectSynthetic imagesen_US
dc.titleOn the detection of images containing child-pornographic materialen_US
dc.typeConference Papersen_US
dc.doihttps://doi.org/10.1109/ICT.2017.7998260en_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/ICT.2017.7998260-
dc.identifier.scopus2-s2.0-85028560860-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85028560860-
cut.common.academicyear2017-2018en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0001-6841-8065-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

9
checked on Mar 14, 2024

Page view(s) 50

366
Last Week
0
Last month
9
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.