Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/11903
DC FieldValueLanguage
dc.contributor.authorGiannoulakis, Stamatios-
dc.contributor.authorTsapatsoulis, Nicolas-
dc.contributor.authorNtalianis, Klimis S.-
dc.date.accessioned2018-07-13T07:20:43Z-
dc.date.available2018-07-13T07:20:43Z-
dc.date.issued2018-03-29-
dc.identifier.citation15th IEEE International Conference on Dependable, Autonomic and Secure Computing 15th IEEE International Conference on Pervasive Intelligence and Computing 3rd IEEE International Conference on Big Data Intelligence and Computing 2017 IEEE Cyber Science and Technology Congress, 2017, Orlando, Florida, 6-10 Novemberen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/11903-
dc.description.abstractMany automatic image annotation methods are based on the learning by example paradigm. Image tagging, through manual image inspection, is the first step towards this end. However, manual image annotation, even for creating the training sets, is time-consuming, complicated and contains human subjectivity errors. Thus, alternative ways for automatically creating training examples, i.e., pairs of images and tags, are crucial. As we showed in one of our previous studies, tags accompanying photos in social media and especially the Instagram hashtags can be used for image annotation. However, it turned out that only a 20% of the Instagram hashtags are actually relevant to the content of the image they accompany. Identifying those hashtags through crowdsourcing is a plausible solution. In this work, we investigate the effectiveness of the HITS algorithm for identifying the right tags in a crowdsourced image tagging scenario. For this purpose, we create a bipartite graph in which the first type of nodes corresponds to the annotators and the second type to the tags they select, among the hashtags, to annotate a particular Instagram image. From the results, we conclude that the authority value of the HITS algorithm provides an accurate estimation of the appropriateness of each Instagram hashtag to be used as a tag for the image it accompanies while the hub value can be used to filter out the dishonest annotators.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relationNetwork for sOcial compuTing REsearch (NOTRE)en_US
dc.rights© 2017 IEEEen_US
dc.subjectBipartite networken_US
dc.subjectGraphsen_US
dc.subjectHashtagsen_US
dc.subjectHITS algorithmen_US
dc.subjectImage retrievalen_US
dc.subjectImage taggingen_US
dc.subjectInstagramen_US
dc.subjectMachine learningen_US
dc.titleIdentifying image tags from Instagram hashtags using the HITS algorithmen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of West Atticaen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/DASC-PICom-DataCom-CyberSciTec.2017.29en_US
cut.common.academicyear2017-2018en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptLibrary and Information Services-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0003-3020-3717-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgCyprus University of Technology-
crisitem.author.parentorgFaculty of Communication and Media Studies-
crisitem.project.funderEC-
crisitem.project.grantnoNOTRE-
crisitem.project.openAireinfo:eu-repo/grantAgreement/EC/H2020/692058-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

12
checked on Nov 6, 2023

Page view(s) 50

544
Last Week
1
Last month
7
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.