Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/1165
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yatracos, Yannis G. | - |
dc.date.accessioned | 2013-01-23T12:54:50Z | en |
dc.date.accessioned | 2013-05-16T08:22:18Z | - |
dc.date.accessioned | 2015-12-02T08:52:11Z | - |
dc.date.available | 2013-01-23T12:54:50Z | en |
dc.date.available | 2013-05-16T08:22:18Z | - |
dc.date.available | 2015-12-02T08:52:11Z | - |
dc.date.issued | 1996-08 | - |
dc.identifier.citation | Statistics and Probability Letters, 1996, vol. 29, no. 2, pp. 143-148 | en_US |
dc.identifier.issn | 01677152 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/1165 | - |
dc.description.abstract | The main result of this paper is filling an existing gap between the theory of least squares regression and the solution of linear systems of equations. A linear least squares regression problem with p-parameters over n cases is converted, via non-orthogonal transformations, into a k-parameter regression problem through the origin on n - p + k cases, and p - k equations in diagonal form with p - k unknowns, 0 < k < p. As a consequence of this result: (i) tests and confidence intervals can be easily obtained for any subset of the parameters of the model; (ii) the regression problem can be converted into p-univariate regression problems through the origin based on (n - p + 1) cases only; (iii) one may conclude that we can talk about the influence of the observations on any subset of the least squares estimates; (iv) the PC user may provide solutions to regression problems of higher dimension than the ones previously handled. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Statistics & Probability Letters | en_US |
dc.rights | © Elsevier | en_US |
dc.subject | Regression analysis | en_US |
dc.subject | Parameter estimation | en_US |
dc.title | Linear least squares regression: a different view | en_US |
dc.type | Article | en_US |
dc.collaboration | University of Montreal | en_US |
dc.journals | Subscription | en_US |
dc.country | Canada | en_US |
dc.subject.field | Social Sciences | en_US |
dc.identifier.doi | 10.1016/0167-7152(95)00167-0 | en_US |
dc.dept.handle | 123456789/54 | en |
dc.relation.issue | 2 | en_US |
dc.relation.volume | 29 | en_US |
cut.common.academicyear | 2020-2021 | en_US |
dc.identifier.spage | 143 | en_US |
dc.identifier.epage | 148 | en_US |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.openairetype | article | - |
item.fulltext | No Fulltext | - |
crisitem.journal.journalissn | 0167-7152 | - |
crisitem.journal.publisher | Elsevier | - |
crisitem.author.dept | Department of Communication and Internet Studies | - |
crisitem.author.faculty | Faculty of Communication and Media Studies | - |
crisitem.author.parentorg | Faculty of Communication and Media Studies | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 8, 2023
WEB OF SCIENCETM
Citations
1
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s)
616
Last Week
0
0
Last month
2
2
checked on Nov 6, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.