Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/11012
DC FieldValueLanguage
dc.contributor.authorAllsop, Thomas P.-
dc.contributor.authorLee, Graham B.-
dc.contributor.authorWang, Changle-
dc.contributor.authorNeal, Ronald-
dc.contributor.authorKalli, Kyriacos-
dc.contributor.authorCulverhouse, Philip-
dc.contributor.authorWebb D., David J.-
dc.date.accessioned2018-05-03T12:20:19Z-
dc.date.available2018-05-03T12:20:19Z-
dc.date.issued2018-01-01-
dc.identifier.citationSensors and Actuators, A: Physical, 2018, vol. 269, pp. 545-555en_US
dc.identifier.issn09244247-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/11012-
dc.description.abstractWe present a new photonic magnetic sensor that can yield information on the spatial angle of rotation of the sensor within a given static magnetic field that based upon an optical fiber platform that has a wavelength-encoded output and a demonstrated sensitivity of 543 pm/mT. This optical fiber magnetic field sensor combines a conventional, UV-laser inscribed long period grating (LPG) with a magnetostrictive material Terfenol-D that coats and fills 50-μm micro-slots running adjacent and parallel to the fiber central axis. The micro-slots are produced using a femtosecond laser and selective chemical etching. A detection limit for a static magnetic field strength of ±50 μT is realized in low strength DC magnetic field (below 0.4 mT), this performance approaches the Earth's magnetic field strength and thus, once optimized, has potential for navigation applications. Our method addresses the major drawback of conventional sensors, namely their inadequate sensitivity to low strength, static magnetic fields and their inability to provide information about the orientation and magnitude.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofSensors and Actuators A: Physicalen_US
dc.rights© The Authors. Published by Elsevier B.V.en_US
dc.subjectLong period gratingsen_US
dc.subjectMagnetic sensorsen_US
dc.subjectMagnetostrictive materialen_US
dc.subjectOptical sensingen_US
dc.titleLaser-sculpted hybrid photonic magnetometer with nanoscale magnetostrictive interactionen_US
dc.typeArticleen_US
dc.collaborationAston Universityen_US
dc.collaborationUniversity of Plymouthen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryUnited Kingdomen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.sna.2017.12.021en_US
dc.relation.volume269en_US
cut.common.academicyear2017-2018en_US
dc.identifier.spage545en_US
dc.identifier.epage555en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.journal.journalissn0924-4247-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4541-092X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
1-s2.0-S0924424717306970-main.pdfFulltext2.99 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s)

406
Last Week
3
Last month
5
checked on Jan 3, 2025

Download(s)

161
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.