Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/10921
Title: | Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions | Authors: | Vyrides, Ioannis Drakou, Efi Maria Ioannou, Stavros Michael, Fotoula Gatidou, Georgia Stasinakis, Athanasios S. |
Major Field of Science: | Natural Sciences | Field Category: | Earth and Related Environmental Sciences | Keywords: | Bilge water;Anaerobic granular sludge;Glycine betaine;Microbial consortium;Post treatment;Moving Bed Biofilm Reactor (MBBR) | Issue Date: | 1-Jul-2018 | Source: | Journal of Environmental Management, 2018, Vol. 217, pp. 356–362 | Volume: | 217 | Start page: | 356 | End page: | 362 | Journal: | Journal of Environmental Management | Abstract: | The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2–12 g COD L−1). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. | URI: | https://hdl.handle.net/20.500.14279/10921 | ISSN: | 03014797 | DOI: | 10.1016/j.jenvman.2018.03.086 | Rights: | © Elsevier Ltd | Type: | Article | Affiliation : | Cyprus University of Technology University of Aegean |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
41
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
50
35
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s)
442
Last Week
0
0
Last month
4
4
checked on Jan 8, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.