Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1060
DC FieldValueLanguage
dc.contributor.authorEfstathiou, Angelos M.-
dc.contributor.authorCosta, Costas-
dc.contributor.authorSavva, Petros G.-
dc.contributor.otherΚώστα, Κώστας-
dc.contributor.otherΣάββα, Πέτρος-
dc.date.accessioned2013-01-21T13:28:25Zen
dc.date.accessioned2013-05-16T06:25:26Z-
dc.date.accessioned2015-12-02T08:44:15Z-
dc.date.available2013-01-21T13:28:25Zen
dc.date.available2013-05-16T06:25:26Z-
dc.date.available2015-12-02T08:44:15Z-
dc.date.issued2005-
dc.identifier.citationCatalysis Today, 2005, vol. 102-103, pp. 78-84en_US
dc.identifier.issn9205861-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1060-
dc.description.abstractEthylene decomposition over Ni supported on novel carbon nanotubes (CNT) and nanofibers under consecutive reaction/regeneration cycles to form CO-free hydrogen and carbon deposits have been investigated. The present work highlights the effects of support chemical composition, catalyst synthesis method and Ni metal loading on the catalytic activity and stability of nickel. A novel 0.5 wt.% Ni/CNT catalyst which presents the highest value of a constant hydrogen product yield (17.5 mol H2/mol Ni), following consecutive reaction (complete deactivation) → regeneration (20% O2/He, 400 °C) cycles, ever reported in the open literature has been developed. Transmission electron microscopy (TEM) and XRD studies revealed that the 0.5 wt.% Ni/CNT catalyst promotes the formation of two types of carbon nanofibers during ethylene decomposition at 400 °C, result that reduces significantly the rate of Ni encapsulation during reaction. The opposite is true in the case of 0.3 wt.% Ni/SiO2 catalyst. In the case of Ni/CNT, there is a narrow range of Ni loading for which maximum H2 product yield is obtained, while in the case of Ni/SiO2, a monotonic increase in the H2 product yield is obtained (Ni loading in the range 0.3–7.0 wt.%).en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofCatalysis Todayen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectEthyleneen_US
dc.subjectNickelen_US
dc.subjectSilicaen_US
dc.titleHydrogen production by ethylene decomposition over ni supported on novel carbon nanotubes and nanofibersen_US
dc.typeArticleen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryENGINEERING AND TECHNOLOGYen_US
dc.journalsHybrid Open Accessen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.cattod.2005.02.008en_US
dc.dept.handle123456789/54en
dc.relation.volume102-103en_US
cut.common.academicyear2005-2006en_US
dc.identifier.spage78en_US
dc.identifier.epage84en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn0920-5861-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-8459-0356-
crisitem.author.orcid0000-0001-6390-315X-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

22
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 20

20
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 20

507
Last Week
0
Last month
3
checked on Jan 7, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons