Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/10538
Title: Isotropic turbulence in compact space
Authors: Gravanis, Elias 
Akylas, Evangelos 
Major Field of Science: Natural Sciences
Field Category: Physical Sciences
Keywords: Isotropic turbulence;Turbulence theory;Turbulent flows
Issue Date: 10-Mar-2017
Source: Journal of Fluid Mechanics, 2017, vol.822, pp.512-560
Volume: 822
Start page: 512
End page: 560
Journal: Journal of Fluid Mechanics 
Abstract: Isotropic turbulence is typically studied numerically through direct numerical simulations (DNS). The DNS flows are described by the Navier-Stokes equation in a 'box', defined through periodic boundary conditions. Ideal isotropic turbulence lives in infinite space. The DNS flows live in a compact space and they are not isotropic in their large scales. Hence, the investigation of important phenomena of isotropic turbulence, such as anomalous scaling, through DNS is affected by large-scale effects in the currently available Reynolds numbers. In this work, we put isotropic turbulence - or better, the associated formal theory - in a 'box', by imposing periodicity at the level of the correlation functions. This is an attempt to offer a framework where one may investigate isotropic theories/models through the data of DNS in a manner as consistent with them as possible. We work at the lowest level of the hierarchy, which involves the two-point correlation functions and the Karman-Howarth equation. Periodicity immediately gives us the discrete wavenumber space of the theory. The wavenumbers start from 1.835, 2.896, 3.923, and progressively approach integer values, in an interesting correspondence with the DNS wavenumber shells. Unlike the Navier-Stokes equation, infinitely smooth periodicity is obstructed in this theory, a fact expressed by a sequence of relations obeyed by the normal modes of the Karman-Howarth equation at the endpoints of a unit period interval. Similar relations are imparted to the two-point functions under the condition that the energy spectrum and energy transfer function are realizable. Hence, these relations are necessary conditions for realizability in this theory. Naturally constructed closure schemes for the Karman-Howarth equation do not conform to such relations, thereby destroying realizability. A closure can be made to conform to a finite number of them by adding corrective terms, in a procedure that possesses certain analogies with the renormalization of quantum field theory. Perhaps the most important one is that we can let the spectrum be unphysical (through sign-changing oscillations of decreasing amplitude) for the infinitely large wavenumbers, as long as we can controllably extend the regime where the spectrum remains physical, deep enough in the dissipation subrange so as to be realistically adequate. Indeed, we show that one or two such 'regularity relations' are needed at most for comparisons of the predictions of the theory with the current resolution level results of the DNS. For the implementation of our arguments, we use a simple closure scheme previously proposed by Oberlack and Peters. The applicability of our ideas to more complex closures is also discussed.
URI: https://hdl.handle.net/20.500.14279/10538
ISSN: 14697645
DOI: 10.1017/jfm.2017.271
Rights: © Cambridge University Press
Type: Article
Affiliation : Cyprus University of Technology 
Publication Type: Peer Reviewed
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

SCOPUSTM   
Citations

2
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 20

2
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

476
Last Week
0
Last month
1
checked on Jan 5, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.