Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/10515
DC FieldValueLanguage
dc.contributor.authorPetropoulos, Anastasios-
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorXanthopoulos, Stelios-
dc.date.accessioned2017-11-16T12:18:08Z-
dc.date.available2017-11-16T12:18:08Z-
dc.date.issued2017-10-
dc.identifier.citationInformation Sciences, 2017, vol. 412-413, pp. 50-66en_US
dc.identifier.issn00200255-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/10515-
dc.description.abstractHidden Markov models (HMMs) are a popular approach for modeling sequential data, typically based on the assumption of a first- or moderate-order Markov chain. However, in many real-world scenarios the modeled data entail temporal dynamics the patterns of which change over time. In this paper, we address this problem by proposing a novel HMM formulation, treating temporal dependencies as latent variables over which inference is performed. Specifically, we introduce a hierarchical graphical model comprising two hidden layers: on the first layer, we postulate a chain of latent observation-emitting states, the temporal dependencies between which may change over time; on the second layer, we postulate a latent first-order Markov chain modeling the evolution of temporal dynamics (dependence jumps) pertaining to the first-layer latent process. As a result of this construction, our method allows for effectively modeling non-homogeneous observed data, where the patterns of the entailed temporal dynamics may change over time. We devise efficient training and inference algorithms for our model, following the expectation-maximization paradigm. We demonstrate the efficacy and usefulness of our approach considering several real-world datasets.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInformation Sciencesen_US
dc.rights© Elsevieren_US
dc.subjectDependence jumpsen_US
dc.subjectVariable orderen_US
dc.subjectExpectation-maximizationen_US
dc.subjectHidden Markov modelsen_US
dc.subjectTemporal dynamicsen_US
dc.titleA hidden Markov model with dependence jumps for predictive modeling of multidimensional time-seriesen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Aegeanen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.ins.2017.05.038en_US
dc.relation.volume412-413en_US
cut.common.academicyear2017-2018en_US
dc.identifier.spage50en_US
dc.identifier.epage66en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0020-0255-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

18
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

13
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

413
Last Week
0
Last month
3
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.