Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/10291
DC FieldValueLanguage
dc.contributor.authorSales, Márcio H.-
dc.contributor.authorde Bruin, Sytze-
dc.contributor.authorHerold, M.-
dc.contributor.authorKyriakidis, Phaedon-
dc.contributor.authorSouza, Carlos Moreira-
dc.date.accessioned2017-10-17T08:26:58Z-
dc.date.available2017-10-17T08:26:58Z-
dc.date.issued2017-08-
dc.identifier.citationSpatial Statistics, 2017, vol. 21, pp. 304-318en_US
dc.identifier.issn22116753-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/10291-
dc.description.abstractThis paper introduces and tests a geostatistical spatiotemporal hurdle approach for predicting the spatial distribution of future deforestation (one to three years ahead in time). The method accounts for neighborhood effects by modeling the auto-correlation of occurrence and intensity of deforestation, using a spatiotemporal geostatistical specification. Deforestation observations are modeled as a function of pertinent control variables, such as distance to roads and protected areas, and the model accounts for space–time autocorrelated residuals with non-stationary variance. Applied to the Brazilian Amazon, the model predicted the locations of new deforestation events with over 90% agreement. In addition, 100% of the deforestation intensity values were contained in the model’s confidence bounds. The features of the model and validation results qualify the model as a strong candidate for short-term deforestation modeling.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofSpatial Statisticsen_US
dc.rights© Elsevieren_US
dc.subjectLand cover modelsen_US
dc.subjectDeforestationen_US
dc.subjectSpatiotemporal modelingen_US
dc.subjectHurdle modelsen_US
dc.titleA spatiotemporal geostatistical hurdle model approach for short-term deforestation predictionen_US
dc.typeArticleen_US
dc.collaborationWageningen Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationInstituto do Homem e Meio Ambiente da Amazôniaen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryNetherlandsen_US
dc.countryBrazilen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.spasta.2017.06.003en_US
dc.relation.volume21en_US
cut.common.academicyear2017-2018en_US
dc.identifier.spage304en_US
dc.identifier.epage318en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn2211-6753-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 5

8
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

403
Last Week
1
Last month
3
checked on Dec 18, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.