Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1024
DC FieldValueLanguage
dc.contributor.authorHansen, Christian B.-
dc.contributor.authorMcDonald, James B.-
dc.contributor.authorTheodossiou, Panayiotis-
dc.contributor.otherΘεοδοσίου, Παναγιώτης-
dc.date.accessioned2010-01-11T08:43:46Zen
dc.date.accessioned2013-05-17T08:42:04Z-
dc.date.accessioned2015-12-02T08:42:21Z-
dc.date.available2010-01-11T08:43:46Zen
dc.date.available2013-05-17T08:42:04Z-
dc.date.available2015-12-02T08:42:21Z-
dc.date.issued2007-07-09-
dc.identifier.citationEconomics - The Open-Access, Open-Assessment E-Journal, 2007, pp. 1-20en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1024-
dc.description.abstractThis paper provides a survey of three families of flexible parametric probability density functions (the skewed generalized t, the exponential generalized beta of the second kind, and the inverse hyperbolic sine distributions) which can be used in modeling a wide variety of econometric problems. A figure, which can facilitate model selection, summarizing the admissible combinations of skewness and kurtosis spanned by the three distributional families is included. Applications of these families to estimating regression models demonstrate that they may exhibit significant efficiency gains relative to conventional regression procedures, such as ordinary least squares estimation, when modeling non-normal errors with skewness and/or leptokurtosis, without suffering large efficiency losses when errors are normally distributed. A second example illustrates the application of flexible parametric density functions as conditional distributions in a GARCH formulation of the distribution of returns on the S&P500. The skewed generalized t can be an important model for econometric analysis.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofEconomicsen_US
dc.rights© Author(s)en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPartially Adaptive Estimationen_US
dc.subjectEconometric Modelsen_US
dc.titleSome flexible parametric models for partially adaptive estimators of econometric modelsen_US
dc.typeArticleen_US
dc.collaborationUniversity of Chicagoen_US
dc.collaborationBrigham Young Universityen_US
dc.collaborationRutgers Universityen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countryUnited Statesen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.5018/economics-ejournal.ja.2007-7en_US
dc.dept.handle123456789/54en
cut.common.academicyear2007-2008en_US
dc.identifier.spage1en_US
dc.identifier.epage20en_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1864-6042-
crisitem.journal.publisherKiel Institute for the World Economy-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Management and Economics-
crisitem.author.orcid0000-0001-5556-2594-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
Some Flexible Parametric.pdf287.21 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s) 20

515
Last Week
1
Last month
2
checked on Dec 22, 2024

Download(s) 50

70
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons