Please use this identifier to cite or link to this item:
Title: Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols
Authors: Hermerschmidt, Felix 
Savva, Achilleas 
Georgiou, Efthymios 
Tuladhar, Sachetan M. 
Durrant, James R. 
McCulloch, Iain 
Bradley, Donal D.C. 
Brabec, Christoph J. 
Nelson, Jenny M. 
Choulis, Stelios A. 
Major Field of Science: Engineering and Technology
Field Category: Mechanical Engineering
Keywords: ISOS-D-2 protocol;Buffer layer engineering;Degradation mechanism;Hole-transporting layer;Inverted structure;Lifetime;Organic photovoltaics;Thermal stability
Issue Date: 26-Apr-2017
Source: ACS Applied Materials and Interfaces, 2017, vol. 9, no. 16, pp. 14136-14144
Volume: 9
Issue: 16
Start page: 14136
End page: 14144
Journal: ACS Applied Materials & Interfaces 
Abstract: High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO3 HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO3 HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO3 interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study.
ISSN: 1944-8244
DOI: 10.1021/acsami.7b01183
Rights: © American Chemical Society
Type: Article
Affiliation : Cyprus University of Technology 
Imperial College London 
University of Oxford 
Friedrich-Alexander University Erlangen-Nuremberg 
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record


checked on Nov 9, 2023


Last Week
Last month
checked on Oct 29, 2023

Page view(s)

Last Week
Last month
checked on Dec 1, 2023

Google ScholarTM



Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.