Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/10039
DC FieldValueLanguage
dc.contributor.authorVoyant, Cyril-
dc.contributor.authorNotton, Gilles-
dc.contributor.authorKalogirou, Soteris A.-
dc.contributor.authorNivet, Marie Laure-
dc.contributor.authorPaoli, Christophe-
dc.contributor.authorMotte, Fabrice-
dc.contributor.authorFouilloy, Alexis-
dc.date.accessioned2017-04-25T10:29:56Z-
dc.date.available2017-04-25T10:29:56Z-
dc.date.issued2017-05-
dc.identifier.citationRenewable Energy, 2017, vol. 105, pp. 569-582en_US
dc.identifier.issn09601481-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/10039-
dc.description.abstractForecasting the output power of solar systems is required for the good operation of the power grid or for the optimal management of the energy fluxes occurring into the solar system. Before forecasting the solar systems output, it is essential to focus the prediction on the solar irradiance. The global solar radiation forecasting can be performed by several methods; the two big categories are the cloud imagery combined with physical models, and the machine learning models. In this context, the objective of this paper is to give an overview of forecasting methods of solar irradiation using machine learning approaches. Although, a lot of papers describes methodologies like neural networks or support vector regression, it will be shown that other methods (regression tree, random forest, gradient boosting and many others) begin to be used in this context of prediction. The performance ranking of such methods is complicated due to the diversity of the data set, time step, forecasting horizon, set up and performance indicators. Overall, the error of prediction is quite equivalent. To improve the prediction performance some authors proposed the use of hybrid models or to use an ensemble forecast approach.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofRenewable Energyen_US
dc.rights© Elsevieren_US
dc.subjectArtificial neural networksen_US
dc.subjectSupport vector machinesen_US
dc.subjectMachine learningen_US
dc.subjectRegressionen_US
dc.subjectSolar radiation forecastingen_US
dc.titleMachine learning methods for solar radiation forecasting: A reviewen_US
dc.typeArticleen_US
dc.collaborationUniversita di Corsica Pascal Paolien_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationCHD Castelluccioen_US
dc.collaborationGalatasaray Universityen_US
dc.subject.categoryMechanical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryFranceen_US
dc.countryCyprusen_US
dc.countryTurkeyen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.renene.2016.12.095en_US
dc.relation.volume105en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage569en_US
dc.identifier.epage582en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0960-1481-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1,074
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

859
Last Week
3
Last month
13
checked on Oct 29, 2023

Page view(s)

515
Last Week
0
Last month
3
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.