Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1003
Title: Thermal stability of solid and aqueous solutions of humic acid
Authors: Kolokassidou, C. 
Pashalidis, Ioannis 
Costa, Costas 
metadata.dc.contributor.other: Κώστα, Κώστας
Major Field of Science: Engineering and Technology
Keywords: Humic acid;Thermogravimetry;Fourier transform infrared spectroscopy;Mass spectrometry;Spectroscopy
Issue Date: 15-Mar-2007
Source: Thermochimica Acta, 2007, vol. 454, no. 2, pp. 78-83
Volume: 454
Issue: 2
Start page: 78
End page: 83
Journal: Thermochimica Acta, 
Abstract: The effects of temperature on the stability of a soil humic acid were studied in the present work. Solid samples of Gohy-573 humic acid (HA) and dissolved ones in aqueous solution (pH 6.0, 0.1 mol L−1 NaClO4) were investigated in order to understand the impact of temperature on the chemical properties of the material. The methods applied to solid samples in the present investigation were thermogravimetric analysis (TGA), temperature-programmed desorption coupled with mass spectrometry (TPD–MS), and in situ diffuse reflectance infrared Fourier transformed spectroscopy (in situ DRIFTS). Humic acid samples were studied in the 25–800 ◦C range, with focus on thermal/chemical processes up to 250 ◦C. The reversibility of the changes observed was investigated by cyclic changes to specified temperature ranges (40–110 ◦C). All measurements were conducted under inert-gas atmosphere in order to avoid samples combustion at increased temperatures. Aqueous solutions were analyzed by UV–vis absorption spectroscopy after storage at temperatures up to 95 ◦C, and storage times up to 1 week. For temperatures below 100 ◦C experiments on solid and aqueous samples have shown results which were consistent to each other. The amount of water desorbed is temperature dependent and up to 70 ◦C this process was totally reversible. Above 70 ◦C an irreversible loss of water was also observed, which according to UV–vis spectroscopy corresponds to water produced by condensation leading to more condensed polyaromatic structures. The water released up to 110 ◦C was about 7 wt% of the total mass of the dried humic acid, where less than 50% corresponded to reversibly adsorbed water. At higher temperatures (>110 ◦C), gradual decomposition resulting in the formation of carbon dioxide (110–240 ◦C), and carbon monoxide (140–240 ◦C) takes place. Hence, thermal treatment of Gohy-573 humic acid above 70 ◦C results in irreversible structural changes, that could affect chemical properties (e.g., complex formation) of the material.
URI: https://hdl.handle.net/20.500.14279/1003
ISSN: 00406031
DOI: 10.1016/j.tca.2006.12.022
Rights: © Elsevier
Attribution-NonCommercial-NoDerivs 3.0 United States
Type: Article
Affiliation: University of Cyprus 
Affiliation : University of Cyprus 
Institut für Nukleare Entsorgung 
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

SCOPUSTM   
Citations

48
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 20

43
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 20

435
Last Week
1
Last month
24
checked on Apr 30, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons