Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/8971
Πεδίο DCΤιμήΓλώσσα
dc.contributor.advisorSirivianos, Michael-
dc.contributor.authorDemetriou, Xenia-
dc.date.accessioned2016-12-21T10:10:48Z-
dc.date.available2016-12-21T10:10:48Z-
dc.date.issued2016-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/8971-
dc.description.abstractThe detection and suspension of fake accounts (Sybils) is a major challenge in Online Social Networks (OSNs). These accounts undermine the services of OSNs and exploit trusted users' accounts for their benefit. Existing social-graph-based approaches restrict Sybil accounts by relying on the structure of links between suspicious and trusted (non-Sybil) accounts. However, Sybil users continue to acquire connections by sending unsolicited friend requests (friend spam) to non-Sybil users. Therefore, new solutions are required. Rejecto is an innovative system developed by researchers of Cyprus University of Technology (CUT) and Duke University in collaboration with Facebook. It is based on the observation that non-Sybil users tend to reject friend spam. Leveraging this insight, Rejecto achieves accurate detection and further restricts Sybil users. Rejecto uses and extends the Kernighan technique, a graph partitioning algorithm. Hence, Rejecto can be treated as a graph algorithm, which enables a wider range of efficient tools to be used for its deployment. Among them we distinguish Apache Giraph, an open source framework that comes to fill the gap of existing tools for large scale graph processing. Giraph is based on the Pregel model that allows the users to implement graph algorithms in an intuitive way, adding scalability, resilience and fault tolerance. In this thesis project, we: i) present our study on the architecture of popular parallel processing paradigms; ii) survey existing social-graph-based approaches; iii) describe the architecture of Apache Giraph; iv) expose the reasons why Rejecto can benefit from an implementation under this open source project.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.publisherDepetment of Electrical Engineering and computer engineering and Informatics, Faculty of Engineering and Technology, Cyprus University of Technologyen_US
dc.rightsΑπαγορεύεται η δημοσίευση ή αναπαραγωγή, ηλεκτρονική ή άλλη χωρίς τη γραπτή συγκατάθεση του δημιουργού και κάτοχου των πνευματικών δικαιωμάτων.en_US
dc.subjectSybilsen_US
dc.subjectOnline Social Networks (OSNs)en_US
dc.subjectDuke Universityen_US
dc.subjectFacebooken_US
dc.titleDetection of sybil accounts in online social networks using rejectoen_US
dc.typeBachelors Thesisen_US
dc.affiliationCyprus University of Technologyen_US
dc.relation.deptDepartment of Electrical Engineering, Computer Engineering and Informaticsen_US
dc.description.statusCompleteden_US
cut.common.academicyearemptyen_US
dc.relation.facultyFaculty of Engineering and Technologyen_US
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.openairetypebachelorThesis-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-6500-581X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Πτυχιακές Εργασίες/ Bachelor's Degree Theses
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Abstract.pdfAbstract175.62 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

Page view(s) 50

414
Last Week
0
Last month
6
checked on 6 Νοε 2024

Download(s) 50

114
checked on 6 Νοε 2024

Google ScholarTM

Check


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα