Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/804
Πεδίο DCΤιμήΓλώσσα
dc.contributor.advisorΣιριβιανός, Μιχάλης-
dc.contributor.authorΟρφανού, Σωτήρης-
dc.date.accessioned2014-06-03T08:02:45Z-
dc.date.accessioned2015-11-30T10:44:43Z-
dc.date.available2014-06-03T08:02:45Z-
dc.date.available2015-11-30T10:44:43Z-
dc.date.issued2013-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/804-
dc.description.abstractNowadays, the users depend on the credibility of the Online Social Networks (OSN), on which they share their personal data with and their guarantees of protecting them. However, the users do not know about the lack of protection that OSNs have against fake accounts. People create fake for various reasons. For instance, a company can create an account for advertising reasons or for retrieving any information, they can from the users, which in turn will use for their advantage. These accounts can belong to anyone and anything (company, animal, etc.). The problem lies not to the reason of the creation of fake accounts but to the creation itself. Nonetheless, OSNs are trying to find and deactivate these accounts with the help of human personnel. The detection of these accounts is a great task because thousands of accounts are activated in a day but only a small part of them are deactivated, according to the designers of SybilRank (Cao, Sirivianos, Yang, & Pregueiro, 2010, p. 3). SybilRank is a new tool, which was developed by researchers from CUT, Telefonica and Duke University. With this tool, OSN providers can take advantage of the social graph and rank accounts according to their probability of being fake (Sybils) therefore making easier their detection. Nevertheless, the processing of social graphs is not such an easy task. They are large amounts of data, which need large-scale parallel computing frameworks for their processing. The current frameworks that have been chosen for this purpose, such as MapReduce (Dean & Ghemawat, 2004), they do not efficiently utilize the shared memory of computers. This drawback makes them useless for computations that use intermediate results, such as PageRank (Wills, 2006) and SybilRank. The solution is a new abstraction called Resilient Distributed Datasets (RDDs), which was developed in UC Berkeley (Zaharia, et al., 2011). RDDs use mainly the RAM of the computers instead of the hard disk during the large-scale parallel computations. In this thesis, we discuss we created an enhanced SybilRank in order to take advantage of this abstraction. Moreover, we demonstrate the implementation of SybilRank on Spark, a framework, which was developed in UC Berkeley by the designers of RDDs. Finally, we discuss about future work and ways to improve the work done in this Thesis, by taking advantage of Amazon EC2 clusters and taking full advantage of the capabilities of Spark and resilient distributed datasets.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.publisherΤμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογιών Πληροφορικής, Σχολή Μηχανικής και Τεχνολογίας, Τεχνολογικό Πανεπιστήμιο Κύπρουen_US
dc.rightsΑπαγορεύεται η δημοσίευση ή αναπαραγωγή, ηλεκτρονική ή άλλη χωρίς τη γραπτή συγκατάθεση του δημιουργού και κατόχου των πνευματικών δικαιωμάτων.en_US
dc.subjectOnline Social Networksen_US
dc.subjectFake Accountsen_US
dc.subjectSybilRanken_US
dc.titleDetection of fake accounts in social networks using resilient distributed datasetsen_US
dc.typeBachelors Thesisen_US
dc.affiliationCyprus University of Technologyen_US
dc.dept.handle123456789/42en
dc.relation.deptDepartment of Electrical Engineering, Computer Engineering and Informaticsen_US
dc.description.statusCompleteden_US
cut.common.academicyear2012-2013en_US
dc.relation.facultyFaculty of Engineering and Technologyen_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.cerifentitytypePublications-
item.openairetypebachelorThesis-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-6500-581X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Πτυχιακές Εργασίες/ Bachelor's Degree Theses
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Sotiris_Orfanou_Abstract.pdf6.46 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

Page view(s) 50

288
Last Week
0
Last month
2
checked on 14 Μαρ 2025

Download(s) 50

95
checked on 14 Μαρ 2025

Google ScholarTM

Check


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα