Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4285
DC FieldValueLanguage
dc.contributor.authorSoteriou, Vassos-
dc.contributor.authorKakoulli, Elena-
dc.contributor.authorTheocharides, Theocharis-
dc.contributor.otherΣωτηρίου, Βάσος-
dc.contributor.otherΚακουλλή, Έλενα-
dc.date.accessioned2013-02-15T11:27:25Zen
dc.date.accessioned2013-05-17T10:38:47Z-
dc.date.accessioned2015-12-09T12:04:22Z-
dc.date.available2013-02-15T11:27:25Zen
dc.date.available2013-05-17T10:38:47Z-
dc.date.available2015-12-09T12:04:22Z-
dc.date.issued2011-
dc.identifier.citationVLSI 2010 Annual Symposium: selected papers, 2011, pp. 3-16en_US
dc.identifier.isbn978-94-007-1487-8 (print)-
dc.identifier.isbn978-94-007-1488-5 (online)-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4285-
dc.description.abstractHotspots are Network on-Chip (NoC) routers or modules which occasionally receive packetized traffic at a higher rate that they can process. This phenomenon reduces the performance of an NoC, especially in the case wormhole flow-control. Such situations may also lead to deadlocks, raising the need of a hotspot prevention mechanism. Such mechanism can potentially enable the system to adjust its behavior and prevent hotspot formation, subsequently sustaining performance and efficiency. This Chapter presents an Artificial Neural Network-based (ANN) hotspot prediction mechanism, potentially triggering a hotspot avoidance mechanism before the hotspot is formed. The ANN monitors buffer utilization and reactively predicts the location of an about to-be-formed hotspot, allowing enough time for the system to react to these potential hotspots. The neural network is trained using synthetic traffic models, and evaluated using both synthetic and real application traces. Results indicate that a relatively small neural network can predict hotspot formation with accuracy ranges between 76 and 92%en_US
dc.language.isoenen_US
dc.rights© Springer Science+Business Media B.V. 2011en_US
dc.subjectComputer scienceen_US
dc.subjectNetworks on a chipen_US
dc.subjectNeural networksen_US
dc.subjectRouters (Computer networks)en_US
dc.titleIntelligent NOC hotspot predictionen_US
dc.typeBook Chapteren_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.reviewpeer reviewed-
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.identifier.doi10.1007/978-94-007-1488-5_1en_US
dc.dept.handle123456789/134en
cut.common.academicyear2019-2020en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypebookPart-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-2818-0459-
crisitem.author.orcid0000-0003-1489-807X-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

1
checked on Nov 9, 2023

Page view(s) 20

448
Last Week
2
Last month
8
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.