Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/4280
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Marques, Oge | - |
dc.contributor.author | Kasparis, Takis | - |
dc.contributor.author | Christodoulou, Lakis | - |
dc.contributor.other | Κασπαρής, Τάκης | - |
dc.contributor.other | Χριστοδούλου, Λάκης | - |
dc.date.accessioned | 2013-02-13T13:48:44Z | en |
dc.date.accessioned | 2013-05-17T10:38:27Z | - |
dc.date.accessioned | 2015-12-09T12:04:18Z | - |
dc.date.available | 2013-02-13T13:48:44Z | en |
dc.date.available | 2013-05-17T10:38:27Z | - |
dc.date.available | 2015-12-09T12:04:18Z | - |
dc.date.issued | 2011-08-30 | - |
dc.identifier.citation | 17th International Conference on Digital Signal Processing, 2011, Pages 1-6 | en_US |
dc.identifier.isbn | 978-1-4577-0274-7 | - |
dc.identifier.issn | 2165-3577 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/4280 | - |
dc.description.abstract | The current research project proposes advanced statistical and adaptive threshold techniques for video object detection and segmentation. We present new statistical adaptive threshold techniques to show the advantages, and how these algorithms overcome the limitations and the technical challenges for object motion detection. The algorithm utilizes statistical quantities such as mean, standard deviation, and variance to define a new adaptive and automatic threshold based on two-frame and three-frame differencing. The proposed algorithms were compared with classic statistical thresholding methods on a testing video for human motion detection, and the experimental results show the effectiveness of the algorithms. Furthermore this research shows an evaluation and comparison among all statistical and adaptive algorithms and proves the benefits of the proposed algorithm. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.rights | © 2011 IEEE | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Statistics | en_US |
dc.subject | Standard deviations | en_US |
dc.subject | Computer graphics | en_US |
dc.title | Advanced statistical and adaptive threshold techniques for moving object detection and segmentation | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.review | peer reviewed | - |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.relation.conference | International Conference on Digital Signal Processing | en_US |
dc.identifier.doi | 10.1109/ICDSP.2011.6004875 | en_US |
dc.dept.handle | 123456789/134 | en |
cut.common.academicyear | 2010-2011 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.cerifentitytype | Publications | - |
item.openairetype | conferenceObject | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-3486-538x | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Κεφάλαια βιβλίων/Book chapters |
CORE Recommender
SCOPUSTM
Citations
50
7
checked on 9 Νοε 2023
Page view(s) 50
477
Last Week
1
1
Last month
29
29
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα