Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/4280
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorMarques, Oge-
dc.contributor.authorKasparis, Takis-
dc.contributor.authorChristodoulou, Lakis-
dc.contributor.otherΚασπαρής, Τάκης-
dc.contributor.otherΧριστοδούλου, Λάκης-
dc.date.accessioned2013-02-13T13:48:44Zen
dc.date.accessioned2013-05-17T10:38:27Z-
dc.date.accessioned2015-12-09T12:04:18Z-
dc.date.available2013-02-13T13:48:44Zen
dc.date.available2013-05-17T10:38:27Z-
dc.date.available2015-12-09T12:04:18Z-
dc.date.issued2011-08-30-
dc.identifier.citation17th International Conference on Digital Signal Processing, 2011, Pages 1-6en_US
dc.identifier.isbn978-1-4577-0274-7-
dc.identifier.issn2165-3577-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4280-
dc.description.abstractThe current research project proposes advanced statistical and adaptive threshold techniques for video object detection and segmentation. We present new statistical adaptive threshold techniques to show the advantages, and how these algorithms overcome the limitations and the technical challenges for object motion detection. The algorithm utilizes statistical quantities such as mean, standard deviation, and variance to define a new adaptive and automatic threshold based on two-frame and three-frame differencing. The proposed algorithms were compared with classic statistical thresholding methods on a testing video for human motion detection, and the experimental results show the effectiveness of the algorithms. Furthermore this research shows an evaluation and comparison among all statistical and adaptive algorithms and proves the benefits of the proposed algorithm.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2011 IEEEen_US
dc.subjectComputer visionen_US
dc.subjectStatisticsen_US
dc.subjectStandard deviationsen_US
dc.subjectComputer graphicsen_US
dc.titleAdvanced statistical and adaptive threshold techniques for moving object detection and segmentationen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.reviewpeer reviewed-
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Digital Signal Processingen_US
dc.identifier.doi10.1109/ICDSP.2011.6004875en_US
dc.dept.handle123456789/134en
cut.common.academicyear2010-2011en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3486-538x-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

7
checked on 9 Νοε 2023

Page view(s) 50

477
Last Week
1
Last month
29
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα