Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/3591
DC FieldValueLanguage
dc.contributor.authorGeorgiou, Olga-
dc.contributor.authorTsapatsoulis, Nicolas-
dc.contributor.otherΓεωργίου, Όλγα-
dc.contributor.otherΤσαπατσούλης, Νικόλας-
dc.date.accessioned2013-02-05T15:39:29Zen
dc.date.accessioned2013-05-17T10:11:39Z-
dc.date.accessioned2015-12-08T10:54:36Z-
dc.date.available2013-02-05T15:39:29Zen
dc.date.available2013-05-17T10:11:39Z-
dc.date.available2015-12-08T10:54:36Z-
dc.date.issued2010en
dc.identifier.citationArtificial intelligence applications and innovations: 6th IFIP WG 12.5 international conference, AIAI 2010, Larnaca, Cyprus, October 6-7, 2010. Proceedings. Pages 12-21en
dc.identifier.isbn978-3-642-16238-1 (print)en
dc.identifier.issn978-3-642-16239-8 (online)en
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3591-
dc.description.abstractIn this paper we explore the efficiency of recommendation provided by representative users on behalf of cluster members. Clustering is used to moderate the scalability and diversity issues faced by most recommendation algorithms face. We show through extended evaluation experiments that cluster representative make successful recommendations outperforming the K-nearest neighbor approach which is common in recommender systems that are based on collaborative filtering. However, selection of representative users depends heavily on the similarity metric that is used to identify users with similar preferences. It is shown that the use of different similarity metrics leads, in general, to different representative users while the commonly used Pearson coefficient is the poorest similarity metric in terms of representative user identificationen
dc.formatpdfen
dc.language.isoenen
dc.rights© 2010 IFIPen
dc.subjectArtificial intelligenceen
dc.subjectRecommender systemsen
dc.subjectInformation technologyen
dc.titleThe importance of similarity metrics for representative users identification in recommender systemsen
dc.typeBook Chapteren
dc.collaborationCyprus University of Technology-
dc.subject.categoryMedia and Communications-
dc.reviewPeer Reviewed-
dc.countryCyprus-
dc.subject.fieldSocial Sciences-
dc.identifier.doi10.1007/978-3-642-16239-8_5en
dc.dept.handle123456789/100en
item.openairetypebookPart-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.languageiso639-1en-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Κεφάλαια βιβλίων/Book chapters
Files in This Item:
File Description SizeFormat
Tsapatsoulis_The importance of similarity metrics for.pdf130.58 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 8, 2023

Page view(s)

535
Last Week
1
Last month
3
checked on Jan 29, 2025

Download(s) 10

301
checked on Jan 29, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.