Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/3556
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorGeorgiou, Olga-
dc.contributor.authorTsapatsoulis, Nicolas-
dc.contributor.otherΓεωργίου, Όλγα-
dc.contributor.otherΤσαπατσούλης, Νικόλας-
dc.date.accessioned2013-02-05T16:53:58Zen
dc.date.accessioned2013-05-17T10:11:40Z-
dc.date.accessioned2015-12-08T10:53:29Z-
dc.date.available2013-02-05T16:53:58Zen
dc.date.available2013-05-17T10:11:40Z-
dc.date.available2015-12-08T10:53:29Z-
dc.date.issued2010en
dc.identifier.citationArtificial neural networks – ICANN 2010: 20th international conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, Part I. Pages 442-449en
dc.identifier.isbn978-3-642-15818-6 (print)en
dc.identifier.issn978-3-642-15819-3 (online)en
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3556-
dc.description.abstractIt is on human nature to seek for recommendation before any purchase or service request. This trend increases along with the enormous information, products and services evolution, and becomes more and more challenging to create robust, and scalable recommender systems that are able to perform in real time. A popular approach for increasing the scalability and decreasing the time complexity of recommender systems, involves user clustering, based on their profiles and similarities. Cluster representatives make successful recommendations for the other cluster members; this way the complexity of recommendation depends only on cluster size. Although classic clustering methods have been often used, the requirements of user clustering in recommender systems, are quite different from the typical ones. In particular, there is no reason to create disjoint clusters or to enforce the partitioning of all the data. In order to eliminate these issues we propose a data clustering method that is based on genetic algorithms. We show, based on findings, that this method is faster and more accurate than classic clustering schemes. The use of clusters created, based on the proposed method, leads to significantly better recommendation qualityen
dc.formatpdfen
dc.language.isoenen
dc.rights© 2010 Springer-Verlag Berlin Heidelbergen
dc.subjectComputer scienceen
dc.subjectNeural networks (Computer science)en
dc.subjectCluster analysisen
dc.subjectGenetic algorithmsen
dc.subjectRecommender systemsen
dc.titleImproving the scalability of recommender systems by clustering using genetic algorithmsen
dc.typeBook Chapteren
dc.collaborationCyprus University of Technology-
dc.subject.categoryMedia and Communications-
dc.reviewPeer Reviewed-
dc.countryCyprus-
dc.subject.fieldSocial Sciences-
dc.identifier.doi10.1007/978-3-642-15819-3_60en
dc.dept.handle123456789/100en
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.openairetypebookPart-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Εμφανίζεται στις συλλογές:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

22
checked on 8 Νοε 2023

Page view(s)

524
Last Week
0
Last month
9
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα