Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/3552
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorTsapatsoulis, Nicolasen
dc.contributor.authorTheodosiou, Zenonas-
dc.contributor.otherΤσαπατσούλης, Νικόλας-
dc.contributor.otherΘεοδοσίου, Ζήνωνας-
dc.date.accessioned2013-02-07T13:51:54Zen
dc.date.accessioned2013-05-17T10:11:46Z-
dc.date.accessioned2015-12-08T10:53:23Z-
dc.date.available2013-02-07T13:51:54Zen
dc.date.available2013-05-17T10:11:46Z-
dc.date.available2015-12-08T10:53:23Z-
dc.date.issued2009en
dc.identifier.citationArtificial neural networks – ICANN 2009: 19th international conference, Limassol, Cyprus, September 14-17, 2009, Proceedings, Part II, Pages 905-912en
dc.identifier.isbn978-3-642-04276-8 (print)en
dc.identifier.issn978-3-642-04277-5 (online)en
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3552-
dc.description.abstractMPEG-7 visual descriptors include the color, texture and shape descriptor and were introduced, after a long period of evaluation, for efficient content-based image retrieval. A total of 22 different kind of features are included, nine for color, eight for texture and five for shape. Encoded values of these features vary significantly and their combination, as a means for better retrieval, is neither straightforward nor efficient. Despite their extensive usage MPEG-7 visual descriptors have never compared concerning their retrieval performance; thus the question which descriptor to use for a particular image retrieval scenario stills unanswered. In this paper we report the results of an extended experimental study on the efficiency of the various MPEG-7 visual features with the aid of the Weka tool and a variety of well-known data classifiers. Our data consist of 1952 images from the athletics domain, containing 7686 manually annotated objects corresponding to eight different classes. The results indicate that combination of selected MPEG-7 visual features may lead to increased retrieval performance compared to single descriptors but this is not a general fact. Furthermore, although the models created using alternative training schemes have similar performance libSVM is by far more effective in model creation in terms of training time and robustness to parameter variationen
dc.formatpdfen
dc.language.isoenen
dc.rights© Springer Berlin Heidelbergen
dc.subjectComputer scienceen
dc.subjectNeural networksen
dc.subjectBack propagation (Artificial intelligence)en
dc.subjectMultimedia systemsen
dc.subjectInformation retrievalen
dc.titleObject classification using the MPEG-7 visual descriptors: an experimental evaluation using state of the art data classifiersen
dc.typeBook Chapteren
dc.collaborationCyprus University of Technology-
dc.subject.categoryMedia and Communications-
dc.reviewPeer Reviewed-
dc.countryCyprus-
dc.subject.fieldSocial Sciences-
dc.identifier.doi10.1007/978-3-642-04277-5_91en
dc.dept.handle123456789/100en
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.openairetypebookPart-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.deptDepartment of Communication and Internet Studies-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.orcid0000-0003-3168-2350-
crisitem.author.parentorgFaculty of Communication and Media Studies-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Εμφανίζεται στις συλλογές:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

2
checked on 8 Νοε 2023

Page view(s) 50

523
Last Week
0
Last month
0
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα