Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/33170
DC FieldValueLanguage
dc.contributor.authorPingos, Michalis-
dc.contributor.authorMina, Athos-
dc.contributor.authorAndreou, Andreas S.-
dc.date.accessioned2024-11-15T07:11:32Z-
dc.date.available2024-11-15T07:11:32Z-
dc.date.issued2024-
dc.identifier.citationProceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pp. 344-352en_US
dc.identifier.isbn9789897586965-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/33170-
dc.description.abstractIn the continuously evolving and growing landscape of Big Data, a key challenge lies in the transformation of a Data Lake into a Data Mesh structure. Unveiling a transformative approach through semantic data blueprints enables organizations to align with changing business needs swiftly and effortlessly. This paper delves into the intricacies of detecting and shaping Data Domains and Data Products within Data Lakes and proposes a standardized methodology that combines the principles of Data Blueprints with Data Meshes. Essentially, this work introduces an innovative standardization framework dedicated to generating Data Products through a mechanism of semantic enrichment of data residing in Data Lakes. This mechanism not only enables the creation readiness and business alignment of Data Domains, but also facilitates the extraction of actionable insights from software products and processes. The proposed approach is qualitatively assessed using a set of functional attributes and is compared against established data structures within storage architectures yielding very promising results.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© SCITEPRESSen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBig Dataen_US
dc.subjectData Blueprintsen_US
dc.subjectData domainsen_US
dc.subjectData lakeen_US
dc.subjectData meshen_US
dc.subjectData productsen_US
dc.subjectMesh structuresen_US
dc.subjectMetadatum semantic enrichmenten_US
dc.subjectSemantic enrichmenten_US
dc.titleTransforming Data Lakes to Data Meshes Using Semantic Data Blueprintsen_US
dc.typeBook Chapteren_US
dc.linkhttps://enase.scitevents.org/?y=2024en_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conference19th International Conference on Evaluation of Novel Approaches to Software Engineeringen_US
dc.identifier.doi10.5220/0012620200003687en_US
dc.identifier.scopus2-s2.0-85193981277-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85193981277-
cut.common.academicyear2024-2025en_US
dc.identifier.spage344en_US
dc.identifier.epage352en_US
item.openairetypebookPart-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Show simple item record

Page view(s)

44
Last Week
0
Last month
4
checked on Jan 29, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons