Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/31021
DC FieldValueLanguage
dc.contributor.authorLyras, Theodoros-
dc.contributor.authorKarathanassis, Ioannis K.-
dc.contributor.authorKyriazis, Nikolaos-
dc.contributor.authorKoukouvinis, Foivos (Phoevos)-
dc.contributor.authorGavaises, Manolis-
dc.date.accessioned2024-01-26T09:19:11Z-
dc.date.available2024-01-26T09:19:11Z-
dc.date.issued2023-01-01-
dc.identifier.citationERCOFTAC Series, 2023, vol. 29, pp. 114 - 124en_US
dc.identifier.isbn978-3-031-30935-9-
dc.identifier.isbn978-3-031-30936-6-
dc.identifier.issn13824309-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/31021-
dc.description.abstractA numerical framework for the simulation of two-phase cryogenic flows under a wide range of pressure conditions is presented in this work. Sub-critical injection and near-vacuum ambient pressure conditions were assessed by numerical simulations. Two different computational approaches have been employed, namely a pressure-based solver complemented by a bubble-dynamics model, as well as a density-based solver utilising real-fluid tabulated data to describe the fluid’s thermodynamic properties. The required thermodynamic-data table has been derived using the Helmholtz Equation of State (EoS) and the specific modelling approach can be applied to near-vacuum, sub-critical or even supercritical injection pressure conditions. The geometries of two single-hole injectors have been considered for investigating the flow and spray formation of liquid oxygen (LOx) and liquid Nitrogen (LN2). Both numerical approaches were validated against available experimental data. Overall, the comparison of results to experimentally acquired data demonstrates the suitability of the employed methodologies in describing processes such cryogenic flashing-flow expansion, phase-change and flash-induced spray formation. The density-based tabulated thermodynamics approach in particular, can be considered as a complete numerical framework for treating two-phase cryogenic flows using real-fluid properties, for a wide range of conditions without the need for case-related modifications.en_US
dc.language.isoenen_US
dc.relation.ispartofERCOFTAC Seriesen_US
dc.rights© The Author(s)en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcompressible flowen_US
dc.subjectcryogenic fluidsen_US
dc.subjectflash boilingen_US
dc.subjectreal-fluid thermodynamicsen_US
dc.titleNumerical Modelling of Cryogenic Flows Under Near-Vacuum Pressure Conditionsen_US
dc.typeBook Chapteren_US
dc.collaborationUniversity of Londonen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1007/978-3-031-30936-6_12en_US
dc.identifier.scopus2-s2.0-85158128244-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85158128244-
dc.relation.volume29en_US
cut.common.academicyear2022-2023en_US
dc.identifier.spage114en_US
dc.identifier.epage124en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypebookPart-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-3945-3707-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 14, 2024

Page view(s)

82
Last Week
3
Last month
5
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons