Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/3065
Title: Approximate trigonometric expansions with applications to image encoding
Authors: Kasparis, Takis 
Memon, Qurban A. 
metadata.dc.contributor.other: Κασπαρής, Τάκης
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Keywords: Image reconstruction;Performance;Data processing
Issue Date: 7-Jun-1996
Source: The International Society for Optical Engineering, 1996, Volume 2751, Pages 26-35
Conference: SPIE Conference Proceedings 
Abstract: The objective of data encoding is to transform a data array into a statistically uncorrelated set. This step is typically considered a 'decorrelation' step because in the case of unitary transformations, the resulting transform coefficients are relatively uncorrelated. Most unitary transforms have the tendency to compact the signal energy into relatively few coefficients. The compaction of energy thus achieved permits a prioritization of the spectral coefficients with the most energetic ones receiving a greater allocation of encoding bits. There are various transforms such as Karhunen-Loeve, discrete cosine transforms etc., but the choice depends on the particular application. In this paper, we apply an approximate Fourier expansion (AFE) to sampled one-dimensional signals and images, and investigate some mathematical properties of the expansion. Additionally, we extend the expansion to an approximate cosine expansion (ACE) and show that for purposes of data compression with minimum error reconstruction of images, the performance of ACE is better than AFE. For comparison purposes, the results also are compared with discrete cosine transform (DCT).
ISBN: 0819421324
DOI: 10.1117/12.242017
Rights: © 1996 SPIE
Type: Conference Papers
Affiliation: University of Central Florida 
Affiliation : University of Central Florida 
Publication Type: Peer Reviewed
Appears in Collections:Κεφάλαια βιβλίων/Book chapters

CORE Recommender
Show full item record

Page view(s) 50

390
Last Week
0
Last month
1
checked on Nov 7, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.