Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/3056
DC FieldValueLanguage
dc.contributor.authorDoulamis, Anastasios D.-
dc.contributor.authorKosmopoulos, Dimitrios I.-
dc.contributor.authorChatzis, Sotirios P.-
dc.date.accessioned2013-02-20T13:47:36Zen
dc.date.accessioned2013-05-17T05:34:06Z-
dc.date.accessioned2015-12-02T12:33:04Z-
dc.date.available2013-02-20T13:47:36Zen
dc.date.available2013-05-17T05:34:06Z-
dc.date.available2015-12-02T12:33:04Z-
dc.date.issued2006-09-
dc.identifier.citationICANN 2006: 16th International Conference on Artificial Neural Networks, Athens, Greece, September 10-14, 2006. Proceedings, Part II, pp. 94-103en_US
dc.identifier.isbn978-3-540-38871-5 (print)-
dc.identifier.isbn978-3-540-38873-9 (online)-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3056-
dc.description.abstractThis paper describes a novel methodology for video summarization and representation. The video shots are processed in space-time as 3D volumes of pixels. Pixel regions with consistent color and motion properties are extracted from these 3D volumes by a space-time segmentation technique based on a novel machine learning algorithm. Each region is then described by a high-dimensional point whose components represent the average position, motion velocity and color of the region. Subsequently, the spatio-temporal relations of the regions are deduced and a concise, graph-based description of them is generated. This graph-based description of the video shot's content, along with the region centroids, comprises a concise yet powerful description of the video-shot and is used for retrieval applications. The retrieval problem is formulated as an inexact graph matching problem between the data video shots and the query input which is also a video segment. Experimental results on action recognition and video retrieval are illustrated and discusseden_US
dc.language.isoenen_US
dc.rights© Springer 2006en_US
dc.subjectComputer scienceen_US
dc.subjectNeural networksen_US
dc.subjectAlgorithmsen_US
dc.subjectGraph theoryen_US
dc.subjectProblem solvingen_US
dc.subjectMachine learningen_US
dc.titleVideo representation and retrieval using spatio-temporal descriptors and region relationsen_US
dc.typeBook Chapteren_US
dc.collaborationNational Technical University Of Athensen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.relation.conferenceInternational Conference on Artificial Neural Networksen_US
dc.identifier.doi10.1007/11840930_10en_US
dc.dept.handle123456789/54en
cut.common.academicyear2006-2007en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.openairetypebookPart-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

4
checked on Nov 9, 2023

Page view(s) 20

467
Last Week
1
Last month
3
checked on Nov 7, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.