Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/3001
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorTsapatsoulis, Nicolasen
dc.contributor.authorWallace, Manolisen
dc.contributor.authorKasderidis, Stathisen
dc.contributor.otherΤσαπατσούλης, Νικόλας-
dc.date.accessioned2009-05-27T10:50:28Zen
dc.date.accessioned2013-05-16T14:08:45Z-
dc.date.accessioned2015-12-02T12:30:06Z-
dc.date.available2009-05-27T10:50:28Zen
dc.date.available2013-05-16T14:08:45Z-
dc.date.available2015-12-02T12:30:06Z-
dc.date.issued2003en
dc.identifier.citationArtificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003, p.173en
dc.identifier.isbn9783540404088en
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3001-
dc.descriptionICANN/ICONIP 2003,(2003,Istanbul,Turkey)en
dc.description.abstractAdaptivity to non-stationary contexts is a very important property for intelligent systems in general, as well as to a variety of applications of knowledge based systems in era of “ambient intelligence”. In this paper we present a modified Resource Allocating Network architecture that allows for online adaptation and knowledge modelling through its adaptive structure. As in any neural network system proper parameter initialization reduces training time and effort. However, in RAN architectures, proper parameter initialization also leads to compact modelling (less hidden nodes) of the process under examination, and consequently to better generalization. In the cases of high-dimensional data parameter initialization is both difficult and time consuming. In the proposed scheme a high – dimensional, unsupervised clustering method is used to properly initialize the RAN architecture. Clusters correspond to the initial nodes of RAN, while output layer weights are also extracted from the clustering procedure. The efficiency of the proposed method has been tested on several classes of publicly available data (iris, ionosphere, etc.)en
dc.formatpdfen
dc.language.isoenen
dc.relation.ispartofseriesArtificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003;en
dc.rights© Springeren
dc.subjectNeural networks (Computer science)--Congressesen
dc.titleImproving the Performance of Resource Allocation Networks through Hierarchical Clustering of High-Dimensional Dataen
dc.typeBook Chapteren
dc.collaborationNational Technical University Of Athens-
dc.collaborationKing's College London-
dc.countryGreece-
dc.countryUnited Kingdom-
dc.identifier.doi10.1007/3-540-44989-2_22en
dc.dept.handle123456789/54en
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.cerifentitytypePublications-
item.openairetypebookPart-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Εμφανίζεται στις συλλογές:Κεφάλαια βιβλίων/Book chapters
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Tsapatsoulis_Improving the Performance of Resource.pdf115.04 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

3
checked on 8 Νοε 2023

Page view(s) 50

538
Last Week
0
Last month
30
checked on 13 Μαρ 2025

Download(s) 5

565
checked on 13 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα