Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/2999
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wallace, Manolis | en |
dc.contributor.author | Tsapatsoulis, Nicolas | en |
dc.contributor.other | Τσαπατσούλης, Νικόλας | - |
dc.date.accessioned | 2009-05-27T10:23:36Z | en |
dc.date.accessioned | 2013-05-16T14:08:44Z | - |
dc.date.accessioned | 2015-12-02T12:29:56Z | - |
dc.date.available | 2009-05-27T10:23:36Z | en |
dc.date.available | 2013-05-16T14:08:44Z | - |
dc.date.available | 2015-12-02T12:29:56Z | - |
dc.date.issued | 2005 | en |
dc.identifier.citation | Artificial Neural Networks: Formal Models and Their Applications - ICANN 2005, pp.521-526 | en |
dc.identifier.isbn | 9783540287551 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/2999 | - |
dc.description | International Conference on Artificial Neural Networks (European Neural Network Society),(15th,2005,Warsaw,PolandV) | en |
dc.description.abstract | The idea of using RBF neural networks for fuzzy rule extraction from numerical data is not new. The structure of this kind of architectures, which supports clustering of data samples, is favorable for considering clusters as if-then rules. However, in order for real if-then rules to be derived, proper antecedent parts for each cluster need to be constructed by selecting the appropriate subspace of input space that best matches each cluster’s properties. In this paper we address the problem of antecedent part construction by (a) initializing the hidden layer of an RBF-Resource Allocating Network using an unsupervised clustering technique whose metric is based on input dimensions that best relate the data samples in a cluster, and (b) by pruning input connections to hidden nodes in a per node basis, using an innovative Genetic Algorithm optimization scheme. | en |
dc.format | en | |
dc.language.iso | en | en |
dc.relation.ispartofseries | Lecture Notes in Computer Science; | en |
dc.rights | © Springer | en |
dc.subject | Neural networks (Computer science)--Congresses | en |
dc.subject | Artificial intelligence--Congresses | en |
dc.title | Combining GAs and RBF Neural Networks for Fuzzy Rule Extraction from Numerical Data | en |
dc.type | Book Chapter | en |
dc.collaboration | University of Indianapolis, Athens Campus | - |
dc.collaboration | National Technical University Of Athens | - |
dc.collaboration | University of Cyprus | - |
dc.country | Greece | - |
dc.country | Cyprus | - |
dc.identifier.doi | 10.1007/11550907_82 | en |
dc.dept.handle | 123456789/54 | en |
item.openairetype | bookPart | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_3248 | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Department of Communication and Marketing | - |
crisitem.author.faculty | Faculty of Communication and Media Studies | - |
crisitem.author.orcid | 0000-0002-6739-8602 | - |
crisitem.author.parentorg | Faculty of Communication and Media Studies | - |
Appears in Collections: | Κεφάλαια βιβλίων/Book chapters |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Tsapatsoulis_Combining GAs and RBF Neural Networks.pdf | 157.79 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s) 50
391
Last Week
0
0
Last month
1
1
checked on Jan 28, 2025
Download(s) 20
247
checked on Jan 28, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.