Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2999
DC FieldValueLanguage
dc.contributor.authorWallace, Manolisen
dc.contributor.authorTsapatsoulis, Nicolasen
dc.contributor.otherΤσαπατσούλης, Νικόλας-
dc.date.accessioned2009-05-27T10:23:36Zen
dc.date.accessioned2013-05-16T14:08:44Z-
dc.date.accessioned2015-12-02T12:29:56Z-
dc.date.available2009-05-27T10:23:36Zen
dc.date.available2013-05-16T14:08:44Z-
dc.date.available2015-12-02T12:29:56Z-
dc.date.issued2005en
dc.identifier.citationArtificial Neural Networks: Formal Models and Their Applications - ICANN 2005, pp.521-526en
dc.identifier.isbn9783540287551en
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2999-
dc.descriptionInternational Conference on Artificial Neural Networks (European Neural Network Society),(15th,2005,Warsaw,PolandV)en
dc.description.abstractThe idea of using RBF neural networks for fuzzy rule extraction from numerical data is not new. The structure of this kind of architectures, which supports clustering of data samples, is favorable for considering clusters as if-then rules. However, in order for real if-then rules to be derived, proper antecedent parts for each cluster need to be constructed by selecting the appropriate subspace of input space that best matches each cluster’s properties. In this paper we address the problem of antecedent part construction by (a) initializing the hidden layer of an RBF-Resource Allocating Network using an unsupervised clustering technique whose metric is based on input dimensions that best relate the data samples in a cluster, and (b) by pruning input connections to hidden nodes in a per node basis, using an innovative Genetic Algorithm optimization scheme.en
dc.formatpdfen
dc.language.isoenen
dc.relation.ispartofseriesLecture Notes in Computer Science;en
dc.rights© Springeren
dc.subjectNeural networks (Computer science)--Congressesen
dc.subjectArtificial intelligence--Congressesen
dc.titleCombining GAs and RBF Neural Networks for Fuzzy Rule Extraction from Numerical Dataen
dc.typeBook Chapteren
dc.collaborationUniversity of Indianapolis, Athens Campus-
dc.collaborationNational Technical University Of Athens-
dc.collaborationUniversity of Cyprus-
dc.countryGreece-
dc.countryCyprus-
dc.identifier.doi10.1007/11550907_82en
dc.dept.handle123456789/54en
item.openairetypebookPart-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.languageiso639-1en-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Κεφάλαια βιβλίων/Book chapters
Files in This Item:
File Description SizeFormat
Tsapatsoulis_Combining GAs and RBF Neural Networks.pdf157.79 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s) 50

391
Last Week
0
Last month
1
checked on Jan 28, 2025

Download(s) 20

247
checked on Jan 28, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.