Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29116
DC FieldValueLanguage
dc.contributor.advisorSirivianos, Michael-
dc.contributor.authorChristodoulou, Christos-
dc.date.accessioned2023-04-27T10:31:58Z-
dc.date.available2023-04-27T10:31:58Z-
dc.date.issued2023-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29116-
dc.description.abstractThis thesis addresses the growing concern of misinformation on social media platforms, particularly regarding COVID-19 vaccines. Focusing on YouTube, the study proposes a framework for identifying and filtering COVID-19 misinformation on the platform by collecting data and modeling misinformation detection. The methodology includes creating four YouTube accounts (from which data was collected), a custom Chrome extension for data collection, and using supervised learning techniques for video-related data labeling and classification. Incorporating Large Language Models (LLMs) and transformers enhances the accuracy of the misinformation detector. The study investigates the effectiveness of YouTube’s tools for identifying and filtering COVID-19 misinformation. The findings can facilitate the development of more effective strategies for promoting public health and safety. The methodology includes using state-of-the-art technologies and techniques like word-embeddings, transformers, natural language processing, and machine learning. Fusing these approaches provides a novel, more sophisticated, and accurate approach to detecting and filtering COVID-19 misinformation on YouTube, preventing its spread.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rightsΑπαγορεύεται η δημοσίευση ή αναπαραγωγή, ηλεκτρονική ή άλλη χωρίς τη γραπτή συγκατάθεση του δημιουργού και κάτοχου των πνευματικών δικαιωμάτων.en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmisinformationen_US
dc.subjectsocial media platformsen_US
dc.subjectCOVID-19 vaccinesen_US
dc.titleA Transformer-based Infrastructure for Youtube Misinformation Detectionen_US
dc.typeMSc Thesisen_US
dc.affiliationCyprus University of Technologyen_US
dc.relation.deptDepartment of Electrical Engineering, Computer Engineering and Informaticsen_US
dc.description.statusCompleteden_US
cut.common.academicyear2022-2023en_US
dc.relation.facultyFaculty of Engineering and Technologyen_US
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_bdcc-
item.grantfulltextnone-
item.openairetypemasterThesis-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-6500-581X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Μεταπτυχιακές Εργασίες/ Master's thesis
CORE Recommender
Show simple item record

Page view(s)

133
Last Week
3
Last month
6
checked on Jan 18, 2025

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons