Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/23639
DC FieldValueLanguage
dc.contributor.authorKyriacou, Efthyvoulos C.-
dc.contributor.authorChristodoulou, Christodoulos-
dc.contributor.authorLoizou, Christos P.-
dc.contributor.authorPattichis, Marios S.-
dc.contributor.authorPattichis, Constantinos S.-
dc.contributor.authorKakkos, Stavros K.-
dc.contributor.authorNicolaides, Andrew N.-
dc.date.accessioned2021-11-15T08:27:18Z-
dc.date.available2021-11-15T08:27:18Z-
dc.date.issued2009-
dc.identifier.citationHandbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, 2009, pp. 160-180en_US
dc.identifier.isbn9781605663159-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/23639-
dc.description.abstractStroke is the third leading cause of death in the Western world and a major cause of disability in adults. The objective of this work was to investigate morphological feature extraction techniques and the use of automatic classifiers; in order to develop a computer aided system that will facilitate the automated characterization of carotid plaques for the identification of individuals with asymptomatic carotid stenosis at risk of stroke. Through this chapter we summarize the recent advances in ultrasonic plaque characterization and evaluate the efficacy of computer aided diagnosis based on neural and statistical classifiers using as input morphological features. Several classifiers like the K-Nearest Neighbour(KNN) the Probabilistic Neural Network(PNN) and the Support Vector Machine(SVM) were evaluated resulting to a diagnostic accuracy up to 73.7%.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© IGI Globalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectStrokeen_US
dc.subjectCarotid plaquesen_US
dc.subjectCarotid stenosisen_US
dc.subjectUltrasonic plaque characterizationen_US
dc.subjectK-Nearest Neighbour (KNN)en_US
dc.subjectProbabilistic Neural Network (PNN)en_US
dc.subjectSupport Vector Machine (SVM)en_US
dc.subjectAtherosclerotic Plaquesen_US
dc.subjectCarotid Stenosisen_US
dc.subjectPathologic Constrictionen_US
dc.titleAssessment of stroke by analysing carotid plaque morphologyen_US
dc.typeBook Chapteren_US
dc.collaborationFrederick Universityen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationIntercollegeen_US
dc.collaborationUniversity of New Mexicoen_US
dc.collaborationUniversity of Patrasen_US
dc.collaborationImperial College Londonen_US
dc.subject.categoryMedical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.countryUnited Kingdomen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.4018/978-1-60566-314-2.ch011en_US
dc.identifier.scopus2-s2.0-84898184710-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84898184710-
cut.common.academicyear2008-2009en_US
dc.identifier.spage160en_US
dc.identifier.epage180en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypebookPart-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4589-519X-
crisitem.author.orcid0000-0003-1247-8573-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Show simple item record

Page view(s) 50

242
Last Week
1
Last month
1
checked on Jan 4, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons