Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/22772
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorAndreou, Andreas S.-
dc.contributor.authorChristoforou, Andreas-
dc.date.accessioned2021-06-23T10:52:57Z-
dc.date.available2021-06-23T10:52:57Z-
dc.date.issued2021-
dc.identifier.citationNext-Gen Digital Services. A Retrospective and Roadmap for Service Computing of the Future, 2021, pp. 48-66en_US
dc.identifier.isbn978-3-030-73203-5-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22772-
dc.description.abstractThis chapter investigates the use of Computational Intelligence (CI) to tackle two challenges in the area of services. The first is involved with providing efficient decision support for migrating from monolithic to service-oriented software, while the latter addresses automatic service composition, which is a special form of service migration. Migration to service-oriented architecture (SOA) is influenced by a number of different and intertwined factors. These factors are identified through literature review and expert consultation. Different CI models, such as Fuzzy Influence Diagrams and Fuzzy Cognitive Maps, are employed to organize the factors and study their behavior. Various simulations are conducted that enable decision makers to execute what-if scenarios and take informed decisions as to whether to migrate or not to SOA, as well as to study the decisive factors contributing in favor or against this migration. Service synthesis is a tedious task considering on one hand the plethora of available services and on the other their different, often conflicting characteristics. Automation of this task is therefore a critical issue which deserves attention. In this context, the challenge of automatic service synthesis is addressed through specific methods and techniques based on Evolutionary Computation to achieve such automation to the best possible extent.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© Springer Natureen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAutomationen_US
dc.subjectDecision-supporten_US
dc.subjectMicroservicesen_US
dc.subjectMigrationen_US
dc.subjectSynthesisen_US
dc.titleOn the Migration to and Synthesis of (Micro-)services: The Use of Intelligent Techniquesen_US
dc.typeBook Chapteren_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1007/978-3-030-73203-5_4en_US
dc.identifier.scopus2-s2.0-85104114843-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85104114843-
cut.common.academicyear2020-2021en_US
dc.identifier.spage48en_US
dc.identifier.epage66en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.openairetypebookPart-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.orcid0000-0001-5598-8894-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons