Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/19216
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Kim, Yeseul | - |
dc.contributor.author | Kyriakidis, Phaedon | - |
dc.contributor.author | Park, No Wook | - |
dc.date.accessioned | 2020-10-20T10:03:24Z | - |
dc.date.available | 2020-10-20T10:03:24Z | - |
dc.date.issued | 2020-05-01 | - |
dc.identifier.citation | Remote Sensing, 2020, vol. 12, iss. 10, article no. 1553 | en_US |
dc.identifier.issn | 2072-4292 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/19216 | - |
dc.description.abstract | Dense time-series with coarse spatial resolution (DTCS) and sparse time-series with fine spatial resolution (STFS) data often provide complementary information. To make full use of this complementarity, this paper presents a novel spatiotemporal fusion model, the spatial time-series geostatistical deconvolution/fusion model (STGDFM), to generate synthesized dense time-series with fine spatial resolution (DTFS) data. Attributes from the DTCS and STFS data are decomposed into trend and residual components, and the spatiotemporal distributions of these components are predicted through novel schemes. The novelty of STGDFM lies in its ability to (1) consider temporal trend information using land-cover-specific temporal profiles from an entire DTCS dataset, (2) reflect local details of the STFS data using resolution matrix representation, and (3) use residual correction to account for temporary variations or abrupt changes that cannot be modeled from the trend components. The potential of STGDFM is evaluated by conducting extensive experiments that focus on different environments; spatially degraded datasets and real Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat images are employed. The prediction performance of STGDFM is compared with those of a spatial and temporal adaptive reflectance fusion model (STARFM) and an enhanced STARFM (ESTARFM). Experimental results indicate that STGDFM delivers the best prediction performance with respect to prediction errors and preservation of spatial structures as it captures temporal change information on the prediction date. The superiority of STGDFM is significant when the difference between pair dates and prediction dates increases. These results indicate that STGDFM can be effectively applied to predict DTFS data that are essential for various environmental monitoring tasks. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation | ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment | en_US |
dc.relation.ispartof | Remote Sensing | en_US |
dc.rights | © by the authors | en_US |
dc.subject | Deconvolution | en_US |
dc.subject | Resolution | en_US |
dc.subject | Spatiotemporal data fusion | en_US |
dc.subject | Temporal information | en_US |
dc.title | A cross-resolution, spatiotemporal geostatistical fusion model for combining satellite image time-series of different spatial and temporal resolutions | en_US |
dc.type | Article | en_US |
dc.collaboration | Inha University | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | ERATOSTHENES Centre of Excellence | en_US |
dc.collaboration | Geospatial Analytics Lab | en_US |
dc.subject.category | Civil Engineering | en_US |
dc.journals | Open Access | en_US |
dc.country | South Korea | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.3390/rs12101553 | en_US |
dc.identifier.scopus | 2-s2.0-85085564512 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85085564512 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.issue | 10 | en_US |
dc.relation.volume | 12 | en_US |
cut.common.academicyear | 2019-2020 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.journal.journalissn | 2072-4292 | - |
crisitem.journal.publisher | MDPI | - |
crisitem.project.funder | EC | - |
crisitem.project.grantno | H2020-WIDESPREAD-2018-01 / WIDESPREAD-01-2018-2019 Teaming Phase 2 | - |
crisitem.project.fundingProgram | H2020 Spreading Excellence, Widening Participation, Science with and for Society | - |
crisitem.project.openAire | info:eu-repo/grantAgreeent/EC/H2020/857510 | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-4222-8567 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Publications under the auspices of the EXCELSIOR H2020 Teaming Project/ERATOSTHENES Centre of Excellence |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
A cross resolution.pdf | Open Access | 7.61 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
12
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
9
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
328
Last Week
0
0
Last month
32
32
checked on 14 Μαρ 2025
Download(s)
266
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα