Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/17626
Title: A European-Scale Investigation of Soil Erosion Threat to Subsurface Archaeological Remains
Authors: Agapiou, Athos 
Lysandrou, Vasiliki 
Hadjimitsis, Diofantos G. 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Keywords: Soil erosion;Water erosion;Subsurface archaeological remains;Soil loss;Natural threats;Cultural heritage;Preservation capacity
Issue Date: 1-Feb-2020
Source: Remote Sens, 2020, vol. 12, no. 4
Volume: 12
Issue: 4
Project: NAVIGATOR: Copernicus Earth Observation Big Data for Cultural Heritage 
ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment 
Related Dataset(s): A European-scale investigation of soil erosion threat to subsurface archaeological residues
Journal: Remote Sensing 
Abstract: This communication emanates from the lack of a European-scale study for investigating the potential threats that subsurface archaeological remains face today due to soil loss by water. This research analyses the impact of soil loss on potential subsurface archaeological evidence by integrating open geospatial datasets deriving from two pertinent European studies. The first study’s dataset is related to soil erosion (soil loss provoked by water activity), which was reclassified into three groups alluding the level of threat on potential subsurface archaeological contexts, as follows: (1) areas presenting soil loss from 0 until 5 t/h per year, which are characterised as low threat areas; (2) areas presenting soil loss from 5 until 10 t/h per year, which are characterised as moderated threat; and (3) areas presenting soil loss beyond 10 t/h per year, which are considered as high-risk areas. The second study’s dataset refers to the capacity of soils to preserve specific archaeological materials, classified in four categories based on the properties of the archaeological material (bones, teeth, and shells (bones); organic materials (organics); metals (Cu, bronze, and Fe) (metals); and stratigraphic evidence (strati). Both datasets were imported into a Geographical Information System (GIS) for further synthesis and analysis, while the average threat of soil loss per year was evaluated in a country level (nomenclature of territorial units for statistics (NUTS) level 0). The overall results show that approximately 10% of European soils that potentially preserve archaeological remains are in high threat due to soil loss, while similar patterns—on a European level—are found for areas characterised with moderate to high risk from the soil loss. This study is the first attempt to present a proxy map for subsurface cultural material under threat due to soil loss, covering the entire European continent.
Description: The authors would like to acknowledge the “CUT Open Access Author Fund” for covering the open access publication fees of the paper.
URI: https://hdl.handle.net/20.500.14279/17626
ISSN: 2072-4292
DOI: 10.3390/rs12040675
Rights: © MDPI AG
Type: Article
Affiliation : Cyprus University of Technology 
ERATOSTHENES Centre of Excellence 
Publication Type: Peer Reviewed
Appears in Collections:Publications under the auspices of the EXCELSIOR H2020 Teaming Project/ERATOSTHENES Centre of Excellence

Files in This Item:
File Description SizeFormat
remotesensing.pdf5.14 MBAdobe PDFView/Open
CORE Recommender
Show full item record

SCOPUSTM   
Citations

11
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

9
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

461
Last Week
0
Last month
9
checked on Jan 5, 2025

Download(s)

204
checked on Jan 5, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons