Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14876
DC FieldValueLanguage
dc.contributor.authorKoutinas, Michalis-
dc.contributor.authorKiparissides, Alexandros-
dc.contributor.authorde Lorenzo, Victor-
dc.contributor.authorMartins dos Santos, Vitor A.P.-
dc.contributor.authorPistikopoulos, Efstratios N.-
dc.contributor.authorMantalaris, Athanasios A.-
dc.date.accessioned2019-08-07T10:42:39Z-
dc.date.available2019-08-07T10:42:39Z-
dc.date.issued2011-
dc.identifier.citationComputer Aided Chemical Engineering, 2011, Volume 29, Pages 1321-1325en_US
dc.identifier.issn1570-7946-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14876-
dc.description.abstractA novel modeling approach for the description of bioprocesses is proposed, linking microbial growth kinetics to gene regulation. An example is given with the development and experimental validation of a dynamic mathematical model of the TOL plasmid of Pseudomonas putida mt-2, which is used for the metabolism of m-xylene. The model of this genetic circuit is coupled to a growth kinetic model through predictions of rate-limiting enzyme concentrations that control biomass growth and substrate consumption. Batch cultures of mt-2 fed with m-xylene were performed to estimate model parameters and to confirm that the combined model successfully describes the bioprocess, through mRNA, biomass and m-xylene concentration measurements. However, mathematical models developed exclusively based on macroscopic measurements failed to predict the process variables, highlighting the importance of gene regulation for the development of advanced biological models. © 2011 Elsevier B.V.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComputer Aided Chemical Engineeringen_US
dc.rights© 2011 Elsevier B.V. All rights reserved.en_US
dc.subjectDynamic modelingen_US
dc.subjectGenetic circuiten_US
dc.subjectpWW0 (TOL) plasmiden_US
dc.subjectm-xyleneen_US
dc.titlePredicting microbial growth kinetics with the use of genetic circuit modelsen_US
dc.typeBook Chapteren_US
dc.collaborationImperial College Londonen_US
dc.collaborationCentro Nacional de Biotecnologíaen_US
dc.collaborationWageningen Universityen_US
dc.subject.categoryBiological Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countrySpainen_US
dc.countryNetherlandsen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/B978-0-444-54298-4.50043-Xen_US
dc.relation.volume29en_US
cut.common.academicyear2010-2011en_US
dc.identifier.spage1321en_US
dc.identifier.epage1325en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.openairetypebookPart-
item.languageiso639-1en-
crisitem.journal.journalissn1570-7946-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-5371-4280-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Κεφάλαια βιβλίων/Book chapters
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

1
checked on Nov 6, 2023

Page view(s) 50

282
Last Week
2
Last month
10
checked on May 11, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.