Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/4284
Τίτλος: HPRA: a pro-active hotspot-preventive high-performance routing algorithm for Networks-on-Chips
Συγγραφείς: Soteriou, Vassos 
Kakoulli, Elena 
Theocharides, Theocharis 
metadata.dc.contributor.other: Σωτηρίου, Βάσος
Κακουλλή, Έλενα
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Computer science;Neural networks (Computer science);Hardware;Microprocessors;Algorithms;Embedded computer systems
Ημερομηνία Έκδοσης: 2012
Πηγή: 2012 IEEE 30th International conference on computer design, 2012, pp. 249-255
Conference: IEEE International Conference on Computer Design, ICCD 
Περίληψη: The inherent spatio-temporal unevenness of traffic flows in Networks-on-Chips (NoCs) can cause unforeseen, and in cases, severe forms of congestion, known as hotspots. Hotspots reduce the NoC's effective throughput, where in the worst case scenario, the entire network can be brought to an unrecoverable halt as a hotspot(s) spreads across the topology. To alleviate this problematic phenomenon several adaptive routing algorithms employ online load-balancing functions, aiming to reduce the possibility of hotspots arising. Most, however, work passively, merely distributing traffic as evenly as possible among alternative network paths, and they cannot guarantee the absence of network congestion as their reactive capability in reducing hotspot formation(s) is limited. In this paper we present a new pro-active Hotspot-Preventive Routing Algorithm (HPRA) which uses the advance knowledge gained from network-embedded Artificial Neural Network-based (ANN) hotspot predictors to guide packet routing across the network in an effort to mitigate any unforeseen near-future occurrences of hotspots. These ANNs are trained offline and during multicore operation they gather online buffer utilization data to predict about-to-be-formed hotspots, promptly informing the HPRA routing algorithm to take appropriate action in preventing hotspot formation(s). Evaluation results across two synthetic traffic patterns, and traffic benchmarks gathered from a chip multiprocessor architecture, show that HPRA can reduce network latency and improve network throughput up to 81% when compared against several existing state-of-the-art congestion-aware routing functions. Hardware synthesis results demonstrate the efficacy of the HPRA mechanism
URI: https://hdl.handle.net/20.500.14279/4284
ISBN: 978-1-4673-3051-0
DOI: 10.1109/ICCD.2012.6378648
Rights: © 2012 IEEE
Type: Book Chapter
Affiliation: Cyprus University of Technology 
Εμφανίζεται στις συλλογές:Κεφάλαια βιβλίων/Book chapters

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

9
checked on 9 Νοε 2023

Page view(s) 20

401
Last Week
1
Last month
2
checked on 29 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα