Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30832
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorBonilha, Iaê S.-
dc.contributor.authorMüller, Felipe M.-
dc.contributor.authorEllinas, Georgios-
dc.contributor.authorPolycarpou, Marios M.-
dc.date.accessioned2023-11-21T12:48:14Z-
dc.date.available2023-11-21T12:48:14Z-
dc.date.issued2019-06-01-
dc.identifier.citation2019 IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10 - 13 June 2019en_US
dc.identifier.isbn9781728121536-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30832-
dc.description.abstractAnt colony optimization (ACO) algorithms have proved to be suitable for solving dynamic optimization problems (DOPs). The integration of local search operators with ACO has also proved to significantly improve the output of ACO algorithms. However, almost all previous works of ACO in DOPs do not utilize local search operators. In this work, the {mathcal M}{mathcal A}{mathcal X}-{mathcal M}{mathcal I}{mathcal N} Ant System ({mathcal M}{mathcal M}AS), one of the best ACO variations, is integrated with advanced and effective local search operators, i.e., the Lin-Kernighan and the Unstringing and Stringing heuristics, resulting in powerful memetic algorithms. The best solution constructed by ACO is passed to the operator for local search improvements. The proposed memetic algorithms aim to combine the adaptation capabilities of ACO for DOPs and the superior performance of the local search operators. The travelling salesperson problem is used as the base problem to generate both symmetric and asymmetric dynamic test cases. Experimental results show that the {mathcal M}{mathcal M}AS is able to provide good initial solutions to the local search operators especially in the asymmetric dynamic test cases.en_US
dc.language.isoenen_US
dc.rights© IEEEen_US
dc.subjectAnt colony optimizationen_US
dc.subjectdynamic travelling salesperson problemen_US
dc.subjectlocal searchen_US
dc.subjectmemetic algorithmen_US
dc.titleEffective ACO-Based Memetic Algorithms for Symmetric and Asymmetric Dynamic Changesen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationFederal University of Santa Mariaen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryBrazilen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.relation.conference2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedingsen_US
dc.identifier.doi10.1109/CEC.2019.8790025en_US
dc.identifier.scopus2-s2.0-85071340450en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85071340450en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2019-2020en_US
item.openairetypeconferenceObject-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

4
checked on Mar 14, 2024

Page view(s)

104
Last Week
0
Last month
1
checked on Dec 11, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.