Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30832
Title: Effective ACO-Based Memetic Algorithms for Symmetric and Asymmetric Dynamic Changes
Authors: Mavrovouniotis, Michalis 
Bonilha, Iaê S. 
Müller, Felipe M. 
Ellinas, Georgios 
Polycarpou, Marios M. 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Keywords: Ant colony optimization;dynamic travelling salesperson problem;local search;memetic algorithm
Issue Date: 1-Jun-2019
Source: 2019 IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10 - 13 June 2019
Conference: 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings 
Abstract: Ant colony optimization (ACO) algorithms have proved to be suitable for solving dynamic optimization problems (DOPs). The integration of local search operators with ACO has also proved to significantly improve the output of ACO algorithms. However, almost all previous works of ACO in DOPs do not utilize local search operators. In this work, the {mathcal M}{mathcal A}{mathcal X}-{mathcal M}{mathcal I}{mathcal N} Ant System ({mathcal M}{mathcal M}AS), one of the best ACO variations, is integrated with advanced and effective local search operators, i.e., the Lin-Kernighan and the Unstringing and Stringing heuristics, resulting in powerful memetic algorithms. The best solution constructed by ACO is passed to the operator for local search improvements. The proposed memetic algorithms aim to combine the adaptation capabilities of ACO for DOPs and the superior performance of the local search operators. The travelling salesperson problem is used as the base problem to generate both symmetric and asymmetric dynamic test cases. Experimental results show that the {mathcal M}{mathcal M}AS is able to provide good initial solutions to the local search operators especially in the asymmetric dynamic test cases.
URI: https://hdl.handle.net/20.500.14279/30832
ISBN: 9781728121536
DOI: 10.1109/CEC.2019.8790025
Rights: © IEEE
Type: Conference Papers
Affiliation : University of Cyprus 
Federal University of Santa Maria 
Publication Type: Peer Reviewed
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

SCOPUSTM   
Citations 20

4
checked on Mar 14, 2024

Page view(s)

104
Last Week
0
Last month
1
checked on Dec 11, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.