Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30774
Τίτλος: Berth Allocation Considering Multiple Quays: A Practical Approach Using Cuckoo Search Optimization
Συγγραφείς: Aslam, Sheraz 
Michaelides, Michalis P. 
Herodotou, Herodotos 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: berth allocation problem;cuckoo search algorithm;intelligent sea transportation;metaheuristic optimization;port efficiency
Ημερομηνία Έκδοσης: 1-Ιου-2023
Πηγή: Journal of Marine Science and Engineering, 2023, vol.11, iss. 7
Volume: 11
Issue: 7
Περιοδικό: Journal of Marine Science and Engineering 
Περίληψη: Maritime container terminals (MCTs) play a fundamental role in international maritime trade, handling inbound, outbound, and transshipped containers. The increasing number of ships and containers creates several challenges to MCTs, such as congestion, long waiting times before ships dock, delayed departures, and high service costs. The berth allocation problem (BAP) concerns allocating berthing positions to arriving ships to reduce total service cost, waiting times, and delays in vessels’ departures. In this work, we extend the study of continuous BAP, which considers a single quay (straight line) for berthing ships, to multiple quays, as found in many ports around the globe. Multi-Quay BAP (MQ-BAP) adds the additional dimension of assigning a preferred quay to each arriving ship, rather than just specifying the berthing position and time. In this study, we address MQ-BAP with the objective of minimizing the total service cost, which includes minimizing the waiting times and delays in the departure of ships. MQ-BAP is first formulated as a mixed-integer linear problem and then solved using the cuckoo search algorithm (CSA), a computational intelligence (CI)-based approach. In addition, the exact mixed-integer linear programming (MILP) method, two other state-of-the-art metaheuristic approaches, namely the genetic algorithm (GA) and particle swarm optimization (PSO), as well as a first come first serve (FCFS) approach, are also implemented for comparison purposes. Several experiments are conducted using both randomly generated and real data from the Port of Limassol, Cyprus, which has five quays serving commercial vessel traffic. The comparative analysis and experimental results show that the CSA-based method achieves the best overall results in affordable time as compared to the other CI-based methods, for all considered scenarios.
URI: https://hdl.handle.net/20.500.14279/30774
ISSN: 20771312
DOI: 10.3390/jmse11071280
Rights: © by the authors
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
jmse-11-01280-v3.pdfFull text3.65 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

2
checked on 14 Μαρ 2024

Page view(s)

132
Last Week
0
Last month
4
checked on 11 Δεκ 2024

Download(s)

94
checked on 11 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons