Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30729
DC FieldValueLanguage
dc.contributor.authorAndreou, Panayiotis-
dc.contributor.authorAnyfantaki, Sofia-
dc.contributor.authorMaasoumi, Esfandiar-
dc.contributor.authorSala, Carlo-
dc.date.accessioned2023-11-01T09:58:24Z-
dc.date.available2023-11-01T09:58:24Z-
dc.date.issued2023-01-01-
dc.identifier.citationEconometric Reviews, 2023, vol. 42, iss. 9-10, pp. 703 - 724en_US
dc.identifier.issn07474938-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30729-
dc.description.abstractWe employ extreme value theory to identify stock price crashes, featuring low-probability events that produce large, idiosyncratic negative outliers in the conditional distribution. Traditional methods employ approximations under Gaussian assumptions and central moments. This is inherently imprecise and susceptible to misspecifications, especially for tail events. We instead propose new definitions and measures for crash risk based on conditional extremal quantiles (CEQ) of idiosyncratic stock returns. CEQ provide information on quantile-specific impact of covariates, and shed light on prior empirical puzzles and shortcomings in identifying crashes. Additionally, to capture the magnitude of crashes, we provide an expected shortfall analysis of the losses due to crash. Our findings have important implications for a burgeoning literature in financial economics that relies on traditional approximations.en_US
dc.language.isoenen_US
dc.relation.ispartofEconometric Reviewsen_US
dc.rights© Taylor & Francis Groupen_US
dc.subjectExtremal quantilesen_US
dc.subjectextreme value theoryen_US
dc.subjectquantile regressionen_US
dc.subjectstock price crashesen_US
dc.titleExtremal quantiles and stock price crashesen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationDurham University Business Schoolen_US
dc.collaborationBank of Greeceen_US
dc.collaborationEmory Universityen_US
dc.collaborationRamon Llull Universityen_US
dc.subject.categoryEconomics and Businessen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.countryUnited Kingdomen_US
dc.countryUnited Statesen_US
dc.countrySpainen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1080/07474938.2023.2241223en_US
dc.identifier.scopus2-s2.0-85168442904-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85168442904-
dc.relation.issue9-10en_US
dc.relation.volume42en_US
cut.common.academicyear2022-2023en_US
dc.identifier.spage703en_US
dc.identifier.epage724en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1532-4168-
crisitem.journal.publisherTaylor & Francis-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0001-5742-0311-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s) 50

122
Last Week
2
Last month
0
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.