Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29908
DC FieldValueLanguage
dc.contributor.authorPanagiotou, Constantinos F.-
dc.contributor.authorKyriakidis, Phaedon-
dc.contributor.authorTziritis, Evangelos-
dc.date.accessioned2023-07-20T06:16:27Z-
dc.date.available2023-07-20T06:16:27Z-
dc.date.issued2022-12-01-
dc.identifier.citationJournal of Hydrology, 2022, vol. 615en_US
dc.identifier.issn00221694-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29908-
dc.description.abstractGroundwater salinization is considered to be one of the most severe and complex phenomena affecting coastal regions worldwide, occurring when high concentrations of water-soluble salts are present in groundwater systems. Geostatistics is a branch of statistics used to analyze and predict the spatio-temporal variability of such complex phenomena. In particular, numerous geostatistical approaches and technologies are currently used to identify and map salinity-affected regions, investigate how salinity indicators influence groundwater mechanisms, and eventually design optimal groundwater management policies. This article reviews recent key applications of geostatistical methods to address challenges relevant to groundwater salinization. The basic principles of geostatistics are briefly described, and numerous studies are discussed that employ geostatistical and multivariate tools for identifying the origin of salinity sources, clarifying the relationship among salinity indicators and groundwater processes, and propagating the uncertainty of the inputs to the outputs of either physically-based or surrogate models of relevant geological systems. Finally, several recommendations and future directions are identified with regards to the most popular methods and with regards to key geostatistical methods whose application in this thematic area is still very limited.en_US
dc.language.isoenen_US
dc.rights© Elsevier B.V.en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGeostatistical simulationsen_US
dc.subjectGroundwater salinizationen_US
dc.subjectKrigingen_US
dc.subjectMultivariate statisticsen_US
dc.subjectSurrogate modelsen_US
dc.titleApplication of geostatistical methods to groundwater salinization problems: A reviewen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationERATOSTHENES Centre of Excellenceen_US
dc.collaborationSoil and Water Resources Instituteen_US
dc.collaborationGeospatial Analytics Laben_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.jhydrol.2022.128566en_US
dc.identifier.scopus2-s2.0-85141922011-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85141922011-
dc.relation.volume615en_US
cut.common.academicyear2022-2023en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

7
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Nov 1, 2023

Page view(s)

160
Last Week
10
Last month
11
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons