Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29885
DC FieldValueLanguage
dc.contributor.authorHerodotou, Herodotos-
dc.contributor.authorOdysseos, Lambros-
dc.contributor.authorChen, Yuxing-
dc.contributor.authorLu, Jiaheng-
dc.date.accessioned2023-07-17T09:30:15Z-
dc.date.available2023-07-17T09:30:15Z-
dc.date.issued2022-05-09-
dc.identifier.citation38th IEEE International Conference on Data Engineering, ICDE 2022Virtual, Kuala Lumpur, Malaysia, 9 - 12 May 2022en_US
dc.identifier.isbn9781665408837-
dc.identifier.issn10844627-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29885-
dc.description.abstractDistributed data stream processing systems (DSPSs) such as Storm, Flink, and Spark Streaming are now routinely used to process continuous data streams in (near) real-time. However, achieving the low latency and high throughput demanded by today's streaming applications can be a daunting task, especially since the performance of DSPSs highly depends on a large number of system parameters that control load balancing, degree of parallelism, buffer sizes, and various other aspects of system execution. This tutorial offers a comprehensive review of the state-of-the-art automatic performance tuning approaches that have been proposed in recent years. The approaches are organized into five main categories based on their methodologies and features: cost modeling, simulation-based, experiment-driven, machine learning, and adaptive tuning. The categories of approaches will be analyzed in depth and compared to each other, exposing their various strengths and weaknesses. Finally, we will identify several open research problems and challenges related to automatic performance tuning for DSPSs.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings - International Conference on Data Engineeringen_US
dc.rights© Elsevier B.V.en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdata stream processingen_US
dc.subjectFlinken_US
dc.subjectparameter tuningen_US
dc.subjectSpark Streamingen_US
dc.subjectStormen_US
dc.titleAutomatic Performance Tuning for Distributed Data Stream Processing Systemsen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationTencent Inc.en_US
dc.collaborationUniversity of Helsinkien_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryCyprusen_US
dc.countryChinaen_US
dc.countryFinlanden_US
dc.subject.fieldEngineering and Technologyen_US
dc.identifier.doi10.1109/ICDE53745.2022.00296en_US
dc.identifier.scopus2-s2.0-85136418873-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85136418873-
cut.common.academicyear2021-2022en_US
dc.identifier.spage3194en_US
dc.identifier.epage3197en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8717-1691-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

5
checked on Mar 14, 2024

Page view(s)

147
Last Week
0
Last month
4
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons