Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/25969
Τίτλος: Short-Term Electricity Price Forecasting by Employing Ensemble Empirical Mode Decomposition and Extreme Learning Machine
Συγγραφείς: Khan, Sajjad 
Aslam, Shahzad 
Mustafa, Iqra 
Aslam, Sheraz 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Price forecasting;Ensemble empirical mode decomposition;Extreme learning machine;Hybrid forecasting;Smart grids
Ημερομηνία Έκδοσης: 2021
Πηγή: Forecasting, 2021, vol. 3, no. 3, pp. 460-477
Volume: 3
Issue: 3
Start page: 460
End page: 477
Περιοδικό: Forecasting 
Περίληψη: Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New SouthWales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.
URI: https://hdl.handle.net/20.500.14279/25969
ISSN: 25719394
DOI: 10.3390/forecast3030028
Rights: © The Author(s).
Type: Article
Affiliation: COMSATS University Islamabad 
Institute of Southern Punjab 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
forecasting-03-00028-v2.pdf817.2 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

12
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations

11
Last Week
0
Last month
2
checked on 29 Οκτ 2023

Page view(s)

229
Last Week
0
Last month
0
checked on 23 Νοε 2024

Download(s) 50

86
checked on 23 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons