Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/23094
DC FieldValueLanguage
dc.contributor.authorSarris, Ernestos-
dc.contributor.authorGravanis, Elias-
dc.contributor.authorPapaloizou, Loizos-
dc.date.accessioned2021-09-22T09:01:44Z-
dc.date.available2021-09-22T09:01:44Z-
dc.date.issued2020-11-18-
dc.identifier.citationE3S Web of Conferences, 2021, vol. 205, articl. no. 02003en_US
dc.identifier.issn22671242-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/23094-
dc.description.abstractIn this work we analyse theoretically and numerically the pressure build-up on the cap rock of a saline aquifer during CO2 injection in all flow regimes. Flow regimes are specific regions of the parameter space representing the mathematical spread of the plume. The parameter space is defined in terms of the CO2-to-brine relative mobility λ and the buoyancy parameter Γ. In addition to the known asymptotic self-similar solutions for low buoyancy regimes, we introduce two novel ones for the high buoyancy regimes via power series solutions. Explicit results for the peak pressure value on the cap, which arises in the vicinity of the well, are derived and discussed for all flow regimes. The analytical results derived are then applied for cap integrity considerations in six test cases of CO2 geological storage from the PCOR partnership, most of which correspond to high buoyancy conditions. The validity of the self-similar solutions which are late time asymptotics, is verified with CFD numerical simulations with a commercial software. The comparison between the self-similar solutions and CFD for the pressure estimations are in excellent agreement and the self-similar solutions are valid for typical injection durations even for early times.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofE3S Web of Conferencesen_US
dc.rights© The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAquifersen_US
dc.subjectBuoyancyen_US
dc.subjectCarbon dioxideen_US
dc.titlePressure build-up analysis in the flow regimes of the CO2 sequestration problemen_US
dc.typeArticleen_US
dc.collaborationUniversity of Nicosiaen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1051/e3sconf/202020502003en_US
dc.identifier.scopus2-s2.0-85097720305-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85097720305-
dc.relation.volume205en_US
cut.common.academicyear2020-2021en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.journal.journalissn2267-1242-
crisitem.journal.publisherEDP Sciences - Web of Conferences-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-5331-6661-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
e3sconf_icegt2020_02003.pdfFulltext785.55 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

3
checked on Mar 14, 2024

Page view(s)

272
Last Week
0
Last month
3
checked on Nov 23, 2024

Download(s) 20

138
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons