Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1782
DC FieldValueLanguage
dc.contributor.authorTsapatsoulis, Nicolas-
dc.contributor.authorVogiatzis, Dimitrios-
dc.date.accessioned2009-05-25T10:08:32Zen
dc.date.accessioned2013-05-16T13:11:28Z-
dc.date.accessioned2015-12-02T09:45:50Z-
dc.date.available2009-05-25T10:08:32Zen
dc.date.available2013-05-16T13:11:28Z-
dc.date.available2015-12-02T09:45:50Z-
dc.date.issued2007-
dc.identifier.citationInternational Journal of Approximate Reasoning, vol. 47, no. 1, 2007, pp. 85-96en_US
dc.identifier.issn0888613X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1782-
dc.description.abstractIn supervised learning it is assumed that it is straightforward to obtain labeled data. However, in reality labeled data 10 can be scarce or expensive to obtain. Active learning (AL) is a way to deal with the above problem by asking for the labels 11 of the most ‘‘informative’’ data points. We propose an AL method based on a metric of classification confidence computed 12 on a feature subset of the original feature space which pertains especially to the large number of dimensions (i.e. examined 13 genes) of microarray experiments. DNA microarray expression experiments permit the systematic study of the correlation 14 of the expression of thousands of genes. 15 Feature selection is critical in the algorithm because it enables faster and more robust retraining of the classifier. The 16 approach that is followed for feature selection is a combination of a variance measure and a genetic algorithm. 17 We have applied the proposed method on DNA microarray data sets with encouraging results. In particular we studied 18 data sets concerning: small round blue cell tumours (four types), Leukemia (two types), lung cancer (two types) and pros- 19 tate cancer (healthy, unhealthy).en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Approximate Reasoning,en_US
dc.rights© Elsevieren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectActive learningen_US
dc.subjectMicroarray dataen_US
dc.subjectClassification confidenceen_US
dc.subjectGenetic algorithmsen_US
dc.titleActive Learning for Microarray dataen_US
dc.typeArticleen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationUniversity of Peloponneseen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.ijar.2007.03.009en_US
dc.dept.handle123456789/54en
dc.relation.issue1en_US
dc.relation.volume47en_US
cut.common.academicyear2007-2008en_US
dc.identifier.spage85en_US
dc.identifier.epage96en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

16
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

14
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

553
Last Week
0
Last month
2
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons