Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14383
DC FieldValueLanguage
dc.contributor.authorKim, Jinwon-
dc.contributor.authorKyriakidis, Phaedon-
dc.contributor.authorMiller, Norman L.-
dc.contributor.otherΚυριακίδης, Φαίδων-
dc.date.accessioned2019-07-08T08:35:38Z-
dc.date.available2019-07-08T08:35:38Z-
dc.date.issued2001-04-01-
dc.identifier.citationJournal of Hydrometeorology, 2001, vol. 2, no. 2, pp. 140-160en_US
dc.identifier.issn1525755X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14383-
dc.description.abstractA Monte Carlo framework is adopted for propagating uncertainty in dynamically downscaled seasonal forecasts of area-averaged daily precipitation to associated streamflow response calculations. Daily precipitation is modeled as a mixture of two stochastic processes: a binary occurrence process and a continuous intensity process, both exhibiting serial correlation. The parameters of these processes (e.g., the proportion of wet days and the average wet-day precipitation intensity in a month) are derived from the forecast record. Parameter uncertainty is characterized via an empirical Bayesian model, whereby such parameters are modeled as random with a specific joint probability distribution. The hyperparameters specifying this probability distribution are derived from historical precipitation records at the study basin. Simulated parameter values are then generated using the Bayesian model, leading to alternative synthetic daily precipitation records simulated via the stochastic precipitation model. The set of such synthetic precipitation records is finally input to a physically based deterministic hydrologic model for propagating uncertainty in forecasted precipitation to hydrologic impact assessment studies. The stochastic simulation approach is applied for generating an ensemble (set) of synthetic area-averaged daily precipitation records at the Hopland basin in the northern California Coast Range for the winter months (December through February: DJF) of 1997/98. The parameters of the stochastic precipitation model are derived from a seasonal precipitation forecast based on the Regional Climate System Model (RCSM), available at a 36-km 2 grid spacing. The large-scale forcing input to RCSM for dynamical downscaling was a seasonal prediction of the University of California, Los Angeles, Atmospheric General Circulation Model. A semidistributed deterministic hydrologic model ("TOPMODEL") is then used for calculating the streamflow response for each member of the area-averaged precipitation ensemble set. Uncertainty in the parameters of the stochastic precipitation model is finally propagated to associated streamflow response, by considering parameter values derived from historical (DJF 1958-92) area-averaged precipitation records at Hopland.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Hydrometeorologyen_US
dc.rights© American Meteorological Societyen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectStreamflowen_US
dc.subjectStream flowen_US
dc.subjectWater resourcesen_US
dc.titleUncertainty propagation of regional climate model precipitation forecasts to hydrologic impact assessmenten_US
dc.typeArticleen_US
dc.collaborationUniversity of Californiaen_US
dc.collaborationLawrence Berkeley National Laboratoryen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1175/1525-7541(2001)002<0140:UPORCM>2.0.CO;2en_US
dc.identifier.scopus2-s2.0-0035532373en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0035532373en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue2en_US
dc.relation.volume2en_US
cut.common.academicyear2000-2001en_US
dc.identifier.spage140en_US
dc.identifier.epage160en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1525-7541-
crisitem.journal.publisherAmerican Meteorological Society-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

14
checked on Mar 14, 2024

Page view(s)

261
Last Week
0
Last month
9
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons