Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/14383
Τίτλος: Uncertainty propagation of regional climate model precipitation forecasts to hydrologic impact assessment
Συγγραφείς: Kim, Jinwon 
Kyriakidis, Phaedon 
Miller, Norman L. 
metadata.dc.contributor.other: Κυριακίδης, Φαίδων
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Streamflow;Stream flow;Water resources
Ημερομηνία Έκδοσης: 1-Απρ-2001
Πηγή: Journal of Hydrometeorology, 2001, vol. 2, no. 2, pp. 140-160
Volume: 2
Issue: 2
Start page: 140
End page: 160
Περιοδικό: Journal of Hydrometeorology 
Περίληψη: A Monte Carlo framework is adopted for propagating uncertainty in dynamically downscaled seasonal forecasts of area-averaged daily precipitation to associated streamflow response calculations. Daily precipitation is modeled as a mixture of two stochastic processes: a binary occurrence process and a continuous intensity process, both exhibiting serial correlation. The parameters of these processes (e.g., the proportion of wet days and the average wet-day precipitation intensity in a month) are derived from the forecast record. Parameter uncertainty is characterized via an empirical Bayesian model, whereby such parameters are modeled as random with a specific joint probability distribution. The hyperparameters specifying this probability distribution are derived from historical precipitation records at the study basin. Simulated parameter values are then generated using the Bayesian model, leading to alternative synthetic daily precipitation records simulated via the stochastic precipitation model. The set of such synthetic precipitation records is finally input to a physically based deterministic hydrologic model for propagating uncertainty in forecasted precipitation to hydrologic impact assessment studies. The stochastic simulation approach is applied for generating an ensemble (set) of synthetic area-averaged daily precipitation records at the Hopland basin in the northern California Coast Range for the winter months (December through February: DJF) of 1997/98. The parameters of the stochastic precipitation model are derived from a seasonal precipitation forecast based on the Regional Climate System Model (RCSM), available at a 36-km 2 grid spacing. The large-scale forcing input to RCSM for dynamical downscaling was a seasonal prediction of the University of California, Los Angeles, Atmospheric General Circulation Model. A semidistributed deterministic hydrologic model ("TOPMODEL") is then used for calculating the streamflow response for each member of the area-averaged precipitation ensemble set. Uncertainty in the parameters of the stochastic precipitation model is finally propagated to associated streamflow response, by considering parameter values derived from historical (DJF 1958-92) area-averaged precipitation records at Hopland.
URI: https://hdl.handle.net/20.500.14279/14383
ISSN: 1525755X
DOI: 10.1175/1525-7541(2001)002<0140:UPORCM>2.0.CO;2
Rights: © American Meteorological Society
Attribution-NonCommercial-NoDerivs 3.0 United States
Type: Article
Affiliation: University of California 
Lawrence Berkeley National Laboratory 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

14
checked on 14 Μαρ 2024

Page view(s)

261
Last Week
0
Last month
9
checked on 23 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons